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Counter-intuitive ideas

Our intuition is based on the length, time and mass scales we
are used to in our daily lives1

1Recommended viewing: Prof. V. Balakrishnan’s first lecture on “Classical
Physics”, available on YouTube as part of NPTEL

2Reference for this section: “Gravity” by James B Hartle, chapters 3 and 4



Postulates of Special Relativity

Principle of Relativity

The laws of physics take the same form2 in all inertial frames of
reference3

(In other words, no experiment can distinguish one inertial
reference frame from another)

Constancy of the speed of light

The speed of light in free-space has the same value c in all inertial
frames of reference (c = 299792458 m/s)

2The mathematical form of the equation looks the same
3An inertial frame of reference is a frame that moves with a free particle



Relativity of Simultaneity
Events that are simultaneous in one inertial frame may not be so in another



Time dilation
Moving clocks appear to run slow



Time dilation
Moving clocks appear to run slow

Source: Special Relativity Lecture Notes by Prof. Tatsu Takeuchi



Spacetime Interval

▶ We can derive that

∆s2 := c2
∆t ′2 −∆x′2 = c2

∆t2 (1)

is the same in all frames

▶ Generalizing to (3+1)-dimensions, we have

∆s2 := c2
∆t2 −∆x2 −∆y2 −∆z2. (2)

This is a Lorentz invariant.
▶ ∆s2 can be positive, negative, zero.

These cases are called “time-like”, “space-like” and
“light-like” (or null) intervals.

▶ When ∆s2 > 0, proper time ∆τ := ∆s/c (∆s2 > 0).
Proper time is the time measured by the clock in its rest
frame.

▶ When ∆s2 < 0, proper length is
√
−∆s2.

Proper length is the length of an object measured in its rest
frame.
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Lorentz-Fitzgerald Contraction
Moving rulers appear shorter

▶ Length: simultaneous measurement of the ends

▶ Simultaneous in one frame is not simultaneous in another!

▶

∆x2︸︷︷︸
moving

=

rest︷ ︸︸ ︷
∆x′2 − c2

∆t ′2 < ∆x′2︸︷︷︸
(rest length)2

(3)



Lorentz-Fitzgerald Contraction
Moving ruler appear shorter

Source: Special Relativity Lecture Notes by Prof. Tatsu Takeuchi
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Newton’s Cannonball



Orbiting planets are in free-fall
Free fall: The only force acting on the object is gravity
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The equivalence principle
The basis for general relativity

▶ Gravitational Mass = Inertial Mass

F = mg, (g = GM/r2) Newton’s Gravitation Law

F = ma. Newton’s Second Law

▶ A freely falling observer feels no gravity

The Equivalence Principle

No experiment differentiate between a uniform gravitational field
and a uniform acceleration
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Case study: Light falls in a gravitational field

We can recover the property that “light travels in straight lines” by
positing that the space has been curved by gravity.
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Gravitational Redshift
Photons climbing out of a gravitational potential well undergo redshift

A

B

fA

fB = ?
C
g
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Gravitational Redshift
Photons climbing out of a gravitational potential well undergo redshift

Because B is moving away from the photon as seen by C, fB must
be redshifted4 relative to frequency seen by C = fA

4Argument is from “Gravity from the Ground Up” by Bernard Schutz
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Gravitational Time Dilation

▶ Imagine clocks at A and B ticking at frequency fA

▶ Let’s synchronize A and the light of frequency fA being
emitted at A so we get a crest every time the clock ticks

▶ The crests arrive more spaced out at B (redshift), as measured
by the clock at B.

▶ Therefore at B, 10 ticks of the clock at A as signaled by the
light beam register more than 10 ticks of the clock at B.

▶ Thus the clock at A is running slower.

Gravitational Time Dilation

Clocks lower in gravitational fields run slower
Time runs slower lower in a gravitational field
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Recap: Equivalence Principle

The Equivalence Principle

No experiment differentiate between a uniform gravitational field
and a uniform acceleration

Inertial observer in GR

▶ Freely falling

▶ No other forces (other than gravity)

What about non-uniform gravitational fields?
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Tidal Forces
Tidal forces: Differential gravity

We now switch to the freely falling frame of the COG of the earth
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Tidal forces: in the local inertial frame of the COG of the earth

For more details, refer to Schutz’s Gravity from the ground up
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Local Inertial Frames
When the gravity is non-uniform, we can only define local inertial frames

Local inertial observer in GR

▶ Freely falling

▶ No other forces (other than gravity)

▶ Tidal effects still seen, only local effects of gravity vanish

The Equivalence Principle (Local Version)

Experiments in a sufficiently small freely-falling laboratory, over a
sufficiently short time give the same results as the same
experiments in an inertial frame in empty space



Tidal Forces
Tidal forces are the remnants of gravity for a freely falling observer
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Tidal forces are the remnants of gravity for a freely falling observer

But the ball has no forces acting on it! So it must go in a straight
line!
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Geodesics
Straight lines in curved space

Geodesics on a sphere are great circles
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Geodesics
Gamow’s rotating platform

Gamow’s Rotating Platform from Mr. Tompkins5

5See also his Scientific American article from March 1961

https://www.scientificamerican.com/article/gamow-gravity/
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Euclidean Geometry

▶ This is geometry on a flat plane or in a flat space

▶ What we learn in high school

▶ Parallel straight lines do not intersect

▶ The sum of angles of a triangle is 180◦

▶ Ratio of circumference to diameter of a circle is π

▶ Distance between two points is given by Pythagoras’ theorem:

(distance)2 = ∆x2 +∆y2 +∆z2
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Example of Curvature: Surface of a Sphere

Note: We are talking about a 2-dimensional surface.
We have embedded it in 3D (flat) space to understand it.

▶ Two great circles intersect
at exactly two points

▶ i.e. lines that start out
parallel do intersect

▶ The sum of angles of a
triangle is always > 180◦

▶ Ratio of circumference to
diameter of a circle is always
≤ π
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Example of Curvature: Surface of a Sphere
A little bit of mathematics

▶ Distance between two
nearby points is given by

(distance)2 =∆φ
2 + cos2

φ ∆λ
2

where φ is latitude, λ is
longitude6.

▶ Note that the distance
metric varies with latitude!

▶ That’s why

ds2 = dφ
2 + cos2

φ dλ
2.

Here d□ denotes a small
change in □.

4By convention, this is written in terms of co-latitude θ and using φ for
longitude, e.g. in Schutz. Then this formula appears as dθ 2 + sin2

θdφ 2.
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Curvature and Parallel Transport

Getting different results when transporting vectors is a hallmark of
curvature
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Beware of embeddings
They can be misleading

▶ Take a flat sheet of paper and draw some geometric objects
on it (e.g. a triangle)

▶ Roll the paper into a cylinder: nothing about the geometry
has changed

▶ Put a wave pattern into the paper: nothing about the
geometry has changed, i.e. it is still Euclidean

▶ Cannot wrap a paper into a sphere: the geometry is
fundamentally different

Curvature in Riemannian Geometry

You cannot “cure” the curvature of a truly curved surface by
bending it smoothly:
You will need to “cut it open” to flatten it out.
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Warning!
Mathematics ahead
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The Metric
Distance formula in curved spacetime

▶ We’ve been seeing formulas like this:

ds2 = dx2 +dy2 +dz2 (Euclidean)

ds2 = dφ
2 + cos2

φ dλ
2 (Sphere)

ds2 = c2dt2 − (dx2 +dy2 +dz2) (Spacetime)

▶ They all have the pattern:

(distance)2 = (something1) d(coord1)2

+(something2) d(coord2)2

...

▶ This is called the metric
▶ It tells us how to calculate distance given the coordinates of

two points (space) or events (spacetime)
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The Metric
Distance formula in curved space(time)

Actually, metric can in general have “cross” terms like dxdy, e.g.

Most general 2D metric

ds2 = A(x,y) dx2 +B(x,y) dy2 +C(x,y) dxdy

Example: Axes that are not perpendicular

y

x
O ∆x

∆y

P

∆s
Cosine rule:

∆s2 = ∆x2 +∆y2 −2∆x∆y cosθ
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The Metric

The metric contains almost all information about curvature of
space and time

Euclidean Metric: Metric of flat space

ds2 = dx2 +dy2 +dz2

Minkowski Metric: Metric of flat spacetime

ds2 = c2dt2 −dx2 −dy2 −dz2

FLRW Metric: Metric describing the universe

ds2 = c2dt2 −a(t)2 [dx2 +dy2 +dz2]
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The Metric
Beware of flat space written in different coordinate systems!

Euclidean 3-D space in Cartesian coordinates

ds2 = dx2 +dy2 +dz2

Euclidean 3-D space in polar coordinates

ds2 = dr2 + r2 (dφ
2 + cos2

φ dλ
2)

There is nothing special about one set of coordinates!

Non-Euclidean 2-D surface of a sphere

ds2 =
(
dφ

2 + cos2
φ dλ

2)
Curvature won’t go away even if we use different coordinates!
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The Metric
Mathematics of the equivalence principle

▶ The metric, however, does encode info about curvature
(Second derivatives of metric =⇒ curvature)

▶ One can always find a set of coordinates at a given point such
that metric appears Euclidean/Minkowski locally!

ds2 = (some complicated stuff)

Making a coordinate transform, change t to t ′, x to x′, y to y′

etc...

ds2 = c2dt ′2 −dx′2 −dy′2 −dz′2 (around some event P)

▶ This is the mathematical analog of the equivalence principle!
We can find a local inertial frame where the laws of physics
apply just like in flat spacetime

▶ Curvature, i.e. tidal effects, do not vanish!
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etc...

ds2 = c2dt ′2 −dx′2 −dy′2 −dz′2 (around some event P)
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We can find a local inertial frame where the laws of physics
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Coordinates
Coordinates are just a systematic way of labeling events in spacetime

Same geometry can be written in different coordinates.



Geodesics
The shortest / longest distance / proper-time between two points

Distance between two points P and Q:

L =
∫ Q

P
ds

Calculus of variations is applied to find maxima/minima of L.
The result7:

Free Particle in Curved Spacetime

d2x
d2τ︸︷︷︸
accel

+Γ
x
tt

(
dt
dτ

)2

= 0

The second term is the pseudo-force we call gravity!

7For details, refer e.g. to Hartle’s book
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Metric of Newtonian Gravity
How gravity warps time near a mass

Recall: Gravity slows down clocks

Choose coordinate t to be the time ticked by a clock infinitely far
away from the mass. Then, we know that the clock at height h in
the gravitational field ticks slower8:

δτ
2 = δ t2

(
1+

2gh
c2

)
Therefore identifying gravitational potential Φ = gh, we can guess

ds2 = c2dτ
2 =

(
1+

2Φ

c2

)
c2dt2 − (dx2 +dy2 +dz2)

8See Investigations 2.2 and 18.1 in Schutz’s Gravity from the Ground Up
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Gravitational Time Dilation

▶ Imagine clocks at A and B ticking at frequency fA

▶ Let’s synchronize A and the light of frequency fA being
emitted at A so we get a crest every time the clock ticks

▶ The crests arrive more spaced out at B (redshift), as measured
by the clock at B.

▶ Therefore at B, 10 ticks of the clock at A as signaled by the
light beam register more than 10 ticks of the clock at B.

▶ Thus the clock at A is running slower.

Gravitational Time Dilation

Clocks lower in gravitational fields run slower
Time runs slower lower in a gravitational field



Metric of Weak Gravity
But space also gets curved: remember Gamow’s platform?

A more thorough derivation shows:

Static, weak-field metric

ds2 =

(
1+

2Φ

c2

)
c2dt2 −

(
1− 2Φ

c2

)
(dx2 +dy2 +dz2)

If we write out the geodesic equation for this metric, we will
recover Newtonian gravity as Fgrav =−∇Φ.
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Curved Spacetime Concepts

▶ A manifold is a curved surface/space of any dimension.

▶ Spacetime is a 4-dimensional manifold. Points in spacetime
are called events.

▶ Coordinates are a convenient, mathematical way of labeling
points in a manifold.

▶ In curved space, distances are not given by differences of
coordinates or simple Pythagoras theorem. Therefore we
should not attach physical meaning to coordinates.

▶ The metric provides a way to calculate distances in the
spacetime and is the generalization of Pythagoras’ theorem to
curved spacetimes.

▶ The metric characterizes a curved spacetime.

▶ Beware of embedding: extrinsic geometry is different from
intrinsic geometry. GR is concerned with intrinsic geometry.
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The Metric

A metric typically looks like

ds2 = (· · ·)c2dt2 − (· · ·)dx2 − (· · ·)dy2 − (· · ·)dz2

where d□ denotes a small change in □. Note that space and time
have opposite sign.

ds2 is the (small) distance between two neighboring events, whose
coordinates are given by (t, x, y, z) and (t +dt, x+dx, y+dy, z+dz).

The (· · ·) represent coefficients that can depend on the coordinates
themselves.

Most details of geometry of spacetime can be determined from the
metric.
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GR Concepts

▶ Matter tells spacetime how to curve, curved spacetime tells
matter how to move

▶ Einstein’s equations (which we did not discuss) when solved
give the metric for a given matter configuration.



GR Concepts

▶ At any point in spacetime, one can locally make spacetime
appear flat. An observer for which this is true is called a local
inertial observer or a freely-falling observer.

▶ Freely falling observers follow geodesics, the generalization of
straight lines to curved spacetime.

▶ A freely falling observer sees spacetime as flat around them.
Thus, they do not feel gravity.

▶ But the effect is local. At further distances from the observer,
there is the remaining effect of geodesic deviation or tidal
force.

▶ Tidal forces are the “true” forces of gravity, seen by freely
falling observers
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What is Cosmology?

The study of the history of the observable universe and its
evolution through physics



What is Cosmology?

▶ The application of physics to the study of the universe at very
large scales and its history

▶ Observational inputs from astronomy and astrophysics

▶ Theoretical inputs from particle physics and general relativity

▶ Current Standard Model of Cosmology: Called the ΛCDM
model
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The Cosmological Principle

On large scales, spacetime is isotropic and homogeneous

▶ Isotropic means “same in every direction”

▶ Homogeneous means “same at every point”
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The Cosmological Principle

Homogeneity vs. Isotropy, Picture from Ned Wright’s Cosmology
Tutorial

https://www.astro.ucla.edu/~wright/cosmo_01.htm
https://www.astro.ucla.edu/~wright/cosmo_01.htm


The Universe is Expanding

Plot taken from Edwin Hubble’s 1929 paper.



Curvature of Space

Homogeneity + Isotropy =⇒ Only three possibilities for curvature
of space

▶ 3D Sphere (“Spherical”)

▶ 3D Saddle / Hyperboloid (“Hyperbolic”)

▶ Flat (“Euclidean”)

Observations show our universe is spatially flat to the best of our
measurements.

Note that at any given time instant, space is flat; spacetime is not.
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Hubble-Lemâıtre Law

v = H r

v is the “velocity” of a distant galaxy, r is the “distance” to the
galaxy, H is the “Hubble constant”.

▶ Theoretically derived by Georges Lemâıtre (1927)

▶ Observationally inferred by Edwin Hubble from Vesto Slipher’s
redshifts (1929)

Homogeneity and Isotropy =⇒ only possible form of
expansion!

Note that H can (and does) vary with time!
“Hubble Parameter” H(t).
Current value is denoted H0, H0 ≈ 67–73km/s/Mpc.
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Model for the expanding universe

No center of expansion: each galaxy moving away from the rest

Assign each galaxy a fixed set of coordinates (x,y,z).
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The standard metric of the universe

Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, for
flat space:

ds2 = c2dt2 −a(t)2(dx2 +dy2 +dz2)

a(t) denotes a time-varying scaling of the coordinates to get the
distance.
a(t) is called the scale factor.
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Hubble Law from FLRW

Let one galaxy be at (x,0,0) and another at (0,0,0). Distance
between them at time t is:

r(t) = a(t)x

Some time, ∆t later, the time is t +∆t, so the distance is

r(t +∆t) = a(t +∆t)x

Velocity is rate of change of distance:

v =
r(t +∆t)− r(t)

∆t
=

a(t +∆t)−a(t)
∆t

x

Divide by starting distance r(t0),

v(t)
r(t)

=
a(t +∆t)−a(t)

a(t)∆t

Note x cancels out, this is the idea of Hubble-Lem̂ıtre Law
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Hubble Law from FLRW

v(t)
r(t)

=
a(t +∆t)−a(t)

a(t)∆t

Left hand side is just v/r = H, so

H(t) =
[a(t +∆t)−a(t)]/(∆t)

a(t)

Introduce the notation ȧ(t) for rate of change of a(t),

H(t) =
ȧ(t)
a(t)

This is the relationship between Hubble parameter and scale factor
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Cosmological Redshift

✗v = H r

Redshift should be interpreted as cosmological redshift due to
expansion of space, and not Doppler effect due to galaxy moving
away!

Redshift z:
z =

v
c

z > 1 is okay. Velocity > c makes no sense. Even the special
relativistic formula should not be used. In fact, relative velocity
between two different points in curved spacetime makes no sense.

Astronomers however continue to convert z to v as a matter of
convention. One should not be alarmed by v > c because v is not
properly a velocity.
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Redshifts, more properly

1+ z =
λobserved

λemitted

Wavelength of the light stretches according to the expansion of

the universe,

1+ z =
a(tobs)
a(temit)

Note: combining z = v/c and v = H(t)r, we get

z ≈ H0r
c

Why is this approximate? Because v = H(t)r is valid across the
universe at a given time,
but we can only observe the past light from galaxies, not their
present positions.
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Redshift! Redshift! Redshift!
It’s one thing we can measure very well

▶ One of the most accurate measurements we can make is
redshift.

▶ Distance can be measured through standard candles up to a
certain distance, especially Type Ia Supernovae, but even this
calibration is model-dependent.

▶ Think of redshift z as an independent measure of distance

▶ Think of redshift z as a replacement of time, since higher z is
looking back into the past
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Contents of the Universe

“E = mc2”, all forms of energy contribute to the curvature of
spacetime

▶ Baryonic Matter (“regular” atoms and molecules making up
galaxies)

▶ Radiation (light rays that we see, CMBR)

▶ Dark Matter (particles we still don’t know about?)

▶ Dark Energy (energy of empty space itself)
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Current proportion of contents

Dark Matter

26.8%

Baryonic Matter

4.9%

Dark Energy

68.3%

Radiation and Neutrinos: ΩR = 10−4, negligible



Dark Matter
Rotation curves of galaxies suggest matter extends way beyond their physical extent

Rotation Curve of M33 from Wikipedia, Credit: Mario De Leo.

Other possible explanation: Modification to Newton’s II Law
(MOND), less popular.
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Dark Matter

▶ More evidence from gravitational lensing measurements:
there’s lot of invisible matter

▶ There is LOT of evidence, and dark matter seems to be the
best explanation

▶ Cannot be regular matter that’s cold / does not emit, because
it would block the light!

▶ Currently most anticipated: “Cold Dark Matter”:

▶ i.e. massive particles (not light like neutrinos),

▶ interacts very weakly with ordinary matter and radiation

▶ Search for dark matter candidates still underway
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Dark Energy (Λ)
What the hell is it?

Denoted by Λ. It is an energy whose density does not diminish as
the universe expands.

Candidates:

▶ Could just be an aspect of Einstein’s Equations (Cosmological
Constant)

▶ Could be energy of quantum fluctuations? (Numbers don’t
add up: the expected number is way high than the amount of
dark energy present)

▶ A new kind of field with energy called quintessence?

But it is needed to account for accelerated expansion of the
universe.
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As the universe expands...
density of matter (dark and baryonic) dilutes like a3(t)

Number of galaxies remains constant, but volume of region
increases like a(t)3.



As the universe expands...
density of radiation (and neutrinos) dilutes like a4(t)

Not only the density of photons decreases like 1/a(t)3, the energy
of each photon also decreases as 1/a(t)



As the universe expands...
density of dark energy does not dilute at all



Density of the contents of the universe
as a function of scale factor a(t)

Recall that 1+ z = a(now)/a(then). If today’s densities are:
▶ Matter: ρM,

▶ Photons and Neutrinos: ρR,

▶ Dark Energy: ρΛ,

then the past densities at redshift z are:

▶ Matter: ρM(1+ z)3

▶ Photons and Neutrinos: ρR(1+ z)4

▶ Dark Energy: ρΛ

So the total density at any point in the past is

ρ(z) = ρM(1+ z)3 +ρR(1+ z)4 +ρΛ
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Friedmann Equation

Einstein’s equations roughly have the form:

Curvature of Spacetime=
8πG
c2 ρ

where ρ is the density of all forms of matter and energy.
“Curvature of spacetime” can be calculated in terms of metric.

Applying this to FLRW metric (for flat space), we get an equation
of the form (

ȧ
a

)2

= H2 =
8πG

3
ρ.

Note that 8πG/3 = 5.59×10−10kgm3/s2 is just a constant. If we
allow for curvature of space, it takes the form:

H(t)2 =
8πG

3
ρ(t)− kc2

a(t)2 ,

where k =+1 for spherical, k =−1 for hyperbolic, k = 0 for flat
space.
This is called the Friedmann equation.
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Critical Density

H(t)2 =
8πG

3
ρ(t)− kc2

a(t)2 ,

When k = 0, i.e. flat space, the density ρ must be equal to

ρc(t) =
3H(t)2

8πG

This is called the Critical Density.

Take the critical density today,

ρc =
3H2

0
8πG

and divide the Friedmann equation by it(
H(t)
H0

)2

=
ρ(t)
ρc

− kc2

ρca(t)2 ,



Critical Density

H(t)2 =
8πG

3
ρ(t)− kc2

a(t)2 ,

When k = 0, i.e. flat space, the density ρ must be equal to

ρc(t) =
3H(t)2

8πG

This is called the Critical Density. Take the critical density today,

ρc =
3H2

0
8πG

and divide the Friedmann equation by it(
H(t)
H0

)2

=
ρ(t)
ρc

− kc2

ρca(t)2 ,



Critical Density

H(t)2 =
8πG

3
ρ(t)− kc2

a(t)2 ,

When k = 0, i.e. flat space, the density ρ must be equal to

ρc(t) =
3H(t)2

8πG

This is called the Critical Density. Take the critical density today,

ρc =
3H2

0
8πG

and divide the Friedmann equation by it(
H(t)
H0

)2

=
ρ(t)
ρc

− kc2

ρca(t)2 ,



Put in the ingredients into ρ

Write in terms of z rather than t (both measure how far into the
past we are looking).
Recall,

ρ(z) = ρM(1+ z)3 +ρR(1+ z)4 +ρΛ

So we can write,(
H(z)
H0

)2

=
ρM

ρc
(1+ z)3 +

ρR

ρc
(1+ z)4 +

ρΛ

ρc
− kc2

ρca(now)2 (1+ z)2,
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Density Parameters

We now define the density parameters as:

ΩM =
ρM

ρc

ΩR =
ρR

ρc

ΩΛ =
ρΛ

ρc

ΩK =
−kc2

ρca(now)2

So we can write,

H(z)2

H2
0

= ΩΛ +ΩK(1+ z)2 +ΩM(1+ z)3 +ΩR(1+ z)4
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The Friedmann Equation from Newtonian Physics
(Must however include all forms of energy under mass density)

Pick an origin. Then by Isotropy + Newton’s Shell Theorem,
galaxy of mass m at radius r from the origin flying away with
velocity v has energy

1
2

mv2 − 4πGmρr2

3
= E = constant.

But v = Hr,

r2
(

H2 − 8πG
3

ρ

)
= 2E/m = constant.

For escape velocity, E = 0, so

H2(t) =
8πG

3
ρc (Critical Denisty)
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The Friedmann Equation from Newtonian Physics
(Must however include all forms of energy under mass density)

For non-zero E, define k :=−2E/(mc2),

H2(t) =
8πG

3
ρ − k

r2

So we get the full Friedmann equation!

Also if the universe is spherically curved, big crunch is possible
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The ΛCDM model

Λ: Dark Energy
CDM: Abbreviation for Cold Dark Matter

ΩM = 0.316, ΩΛ = 0.683, ΩR and ΩK negligible.

Dark Matter

26.8%

Baryonic Matter

4.9%

Dark Energy

68.3%

Radiation and Neutrinos: ΩR = 10−4, negligible
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From the present to the past
Using ΩM = 0.268, ΩR = 9×10−5, ΩL = 0.732



Cosmic Microwave Background Radiation
The universe is filled with microwave radiation

CMBR map from Planck collaboration.
(c) ESA and Planck Collaboration



The CMBR is the redshifted relic of the hot universe

The temperature redshifts,

T (z) = T0(1+ z).

The spectrum remains that of a black-body.



The CMBR is the redshifted relic of the hot universe

The temperature redshifts,

T (z) = T0(1+ z).

The spectrum remains that of a black-body.



“Recombination” epoch

In the early universe,

▶ the protons and electrons were in a plasma

▶ plasma of conducting particles is opaque to light (absorbs and
re-emits)

As universe cooled down,

▶ At about T (z)≈ 3000K, protons and electrons combined to
form hydrogen

▶ Non-conducting gas, transparent to light

▶ Photons stream freely thereafter

The temperature of the radiation is frozen-in from the
“recombination” era, and gets redshifted.

T (z) = 3000K,T0 = 2.7K =⇒ zrecomb ≈ 1100
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Anisotropy of the CMBR
The temperature varies to a part in 105

CMBR map from Planck collaboration.
(c) ESA and Planck Collaboration

▶ The fluctuations in CMBR are imprints of fluctuations of
matter density

▶ These fluctuations condensed under gravity to form galaxies



Behavior of the scale factor
Solutions of the Friedmann equation for various constituents

Dominating Constitutent How it Dilutes Behavior of Scale Factor

Radiation ρ(t) ∝ 1/a(t)3 a(t) ∝ t1/2

Matter ρ(t) ∝ 1/a(t)4 a(t) ∝ t2/3

Dark Energy ρ(t) = constant a(t) ∝ exp(H0t)



Expansion History of the Universe

Plot of a(t) vs t, Credit: NASA
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Light Travel Time vs Redshift



Angular Size Distance

When we see a galaxy, it appears at it appeared in the past, at the
lookback time t(z).

At this time, it was closer to us; so it appears bigger than expected

At some point, we are looking so far back, that the galaxies start
getting closer to us and the angular size distance actually
decreases!
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Luminosity Distance

“Normal” Inverse-Square Law:

F =
L

4πd2

In an expanding universe, what must d be?
The answer: Comoving Distance at the instance the light reaches
us, i.e. d(z).
But photons redshifted, so energy reduces by 1+ z. Rate of arrival
of photons also reduces by 1+ z.
Thus, the expanding-universe version is,

F =
L

4πd(z)2(1+ z)2 ,

so the luminosity distance is given by d(z)(1+ z).
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Different notions of distance
Flat Universe

Define

E(z) := ΩΛ +ΩK(1+ z)2 +ΩM(1+ z)3 +ΩR(1+ z)4.

Light Travel Time:

t(z) :=
1

H0

∫ z

0

dz′

(1+ z′)
√

E(z′)

Comoving Radial Distance:

d(z) :=
c

H0

∫ z

0

dz′√
E(z′)



Different notions of distance
Flat Universe

Angular Size Distance:

dA(z) :=
d(z)
1+ z

Luminosity Distance:

dL(z) := d(z)(1+ z)

Too many complex equations???? :-(



Different notions of distance
Flat Universe

Angular Size Distance:

dA(z) :=
d(z)
1+ z

Luminosity Distance:

dL(z) := d(z)(1+ z)

Too many complex equations???? :-(



Use Ned Wright’s Cosmology Calculator instead!

https://www.astro.ucla.edu/~wright/CosmoCalc.html

https://www.astro.ucla.edu/~wright/CosmoCalc.html


Thank you



References

Lecture Series:

▶ Cosmology Lectures from Lenny Susskind’s Theoretical
Minimum (least technical)

▶ G Srinivasan’s Lectures for Astronomical Society of India

▶ Cosmology Lecture (highly technical)

Online resources:

▶ Distance measures in cosmology by D. W. Hogg

▶ Ned Wright’s Cosmology Tutorial

▶ Distances in Cosmology by G. Kauffmann

▶ GR and Distances by R. Kudritzki

▶ Ned Wright’s Cosmology FAQ

https://www.youtube.com/watch?v=tnzis2JcUM4&list=PLgg-_kzDkaSFS4JwgDaifTQcYcVSqMBfu
http://background.uchicago.edu/~whu/courses/Ast448/dist_ref.pdf
https://www.astro.ucla.edu/~wright/cosmo_01.htm
https://wwwmpa.mpa-garching.mpg.de/~gamk/TUM_Lectures/Lecture3.pdf
https://home.ifa.hawaii.edu/users/kud/teaching_15/15_dGR.pdf
https://www.astro.ucla.edu/~wright/cosmology_faq.html

	Special Relativity Primer
	General Relativity Primer
	Introduction to curved space-time
	Local Inertial Frames
	Curved Space
	Basic Mathematics of Curved Spacetime
	Weak Field Metric

	Theory of Cosmology
	Recap
	Introduction to Cosmology
	Expansion of the Universe
	Cosmological Redshift
	The ingredients of the universe
	The Friedmann Equation
	The Early Universe
	Distances in an Expanding (Flat) Universe


	27.EndRight: 
	27.PlayPauseRight: 
	27.PlayRight: 
	27.PauseRight: 
	27.PlayPauseLeft: 
	27.PlayLeft: 
	27.PauseLeft: 
	27.EndLeft: 
	anm27: 
	27.20: 
	27.19: 
	27.18: 
	27.17: 
	27.16: 
	27.15: 
	27.14: 
	27.13: 
	27.12: 
	27.11: 
	27.10: 
	27.9: 
	27.8: 
	27.7: 
	27.6: 
	27.5: 
	27.4: 
	27.3: 
	27.2: 
	27.1: 
	27.0: 
	26.EndRight: 
	26.PlayPauseRight: 
	26.PlayRight: 
	26.PauseRight: 
	26.PlayPauseLeft: 
	26.PlayLeft: 
	26.PauseLeft: 
	26.EndLeft: 
	anm26: 
	26.49: 
	26.48: 
	26.47: 
	26.46: 
	26.45: 
	26.44: 
	26.43: 
	26.42: 
	26.41: 
	26.40: 
	26.39: 
	26.38: 
	26.37: 
	26.36: 
	26.35: 
	26.34: 
	26.33: 
	26.32: 
	26.31: 
	26.30: 
	26.29: 
	26.28: 
	26.27: 
	26.26: 
	26.25: 
	26.24: 
	26.23: 
	26.22: 
	26.21: 
	26.20: 
	26.19: 
	26.18: 
	26.17: 
	26.16: 
	26.15: 
	26.14: 
	26.13: 
	26.12: 
	26.11: 
	26.10: 
	26.9: 
	26.8: 
	26.7: 
	26.6: 
	26.5: 
	26.4: 
	26.3: 
	26.2: 
	26.1: 
	26.0: 
	25.EndRight: 
	25.PlayPauseRight: 
	25.PlayRight: 
	25.PauseRight: 
	25.PlayPauseLeft: 
	25.PlayLeft: 
	25.PauseLeft: 
	25.EndLeft: 
	anm25: 
	25.19: 
	25.18: 
	25.17: 
	25.16: 
	25.15: 
	25.14: 
	25.13: 
	25.12: 
	25.11: 
	25.10: 
	25.9: 
	25.8: 
	25.7: 
	25.6: 
	25.5: 
	25.4: 
	25.3: 
	25.2: 
	25.1: 
	25.0: 
	24.EndRight: 
	24.PlayPauseRight: 
	24.PlayRight: 
	24.PauseRight: 
	24.PlayPauseLeft: 
	24.PlayLeft: 
	24.PauseLeft: 
	24.EndLeft: 
	anm24: 
	24.23: 
	24.22: 
	24.21: 
	24.20: 
	24.19: 
	24.18: 
	24.17: 
	24.16: 
	24.15: 
	24.14: 
	24.13: 
	24.12: 
	24.11: 
	24.10: 
	24.9: 
	24.8: 
	24.7: 
	24.6: 
	24.5: 
	24.4: 
	24.3: 
	24.2: 
	24.1: 
	24.0: 
	23.EndRight: 
	23.PlayPauseRight: 
	23.PlayRight: 
	23.PauseRight: 
	23.PlayPauseLeft: 
	23.PlayLeft: 
	23.PauseLeft: 
	23.EndLeft: 
	anm23: 
	23.23: 
	23.22: 
	23.21: 
	23.20: 
	23.19: 
	23.18: 
	23.17: 
	23.16: 
	23.15: 
	23.14: 
	23.13: 
	23.12: 
	23.11: 
	23.10: 
	23.9: 
	23.8: 
	23.7: 
	23.6: 
	23.5: 
	23.4: 
	23.3: 
	23.2: 
	23.1: 
	23.0: 
	22.EndRight: 
	22.PlayPauseRight: 
	22.PlayRight: 
	22.PauseRight: 
	22.PlayPauseLeft: 
	22.PlayLeft: 
	22.PauseLeft: 
	22.EndLeft: 
	anm22: 
	22.23: 
	22.22: 
	22.21: 
	22.20: 
	22.19: 
	22.18: 
	22.17: 
	22.16: 
	22.15: 
	22.14: 
	22.13: 
	22.12: 
	22.11: 
	22.10: 
	22.9: 
	22.8: 
	22.7: 
	22.6: 
	22.5: 
	22.4: 
	22.3: 
	22.2: 
	22.1: 
	22.0: 
	21.EndRight: 
	21.PlayPauseRight: 
	21.PlayRight: 
	21.PauseRight: 
	21.PlayPauseLeft: 
	21.PlayLeft: 
	21.PauseLeft: 
	21.EndLeft: 
	anm21: 
	21.23: 
	21.22: 
	21.21: 
	21.20: 
	21.19: 
	21.18: 
	21.17: 
	21.16: 
	21.15: 
	21.14: 
	21.13: 
	21.12: 
	21.11: 
	21.10: 
	21.9: 
	21.8: 
	21.7: 
	21.6: 
	21.5: 
	21.4: 
	21.3: 
	21.2: 
	21.1: 
	21.0: 
	20.EndRight: 
	20.PlayPauseRight: 
	20.PlayRight: 
	20.PauseRight: 
	20.PlayPauseLeft: 
	20.PlayLeft: 
	20.PauseLeft: 
	20.EndLeft: 
	anm20: 
	20.23: 
	20.22: 
	20.21: 
	20.20: 
	20.19: 
	20.18: 
	20.17: 
	20.16: 
	20.15: 
	20.14: 
	20.13: 
	20.12: 
	20.11: 
	20.10: 
	20.9: 
	20.8: 
	20.7: 
	20.6: 
	20.5: 
	20.4: 
	20.3: 
	20.2: 
	20.1: 
	20.0: 
	19.EndRight: 
	19.PlayPauseRight: 
	19.PlayRight: 
	19.PauseRight: 
	19.PlayPauseLeft: 
	19.PlayLeft: 
	19.PauseLeft: 
	19.EndLeft: 
	anm19: 
	19.45: 
	19.44: 
	19.43: 
	19.42: 
	19.41: 
	19.40: 
	19.39: 
	19.38: 
	19.37: 
	19.36: 
	19.35: 
	19.34: 
	19.33: 
	19.32: 
	19.31: 
	19.30: 
	19.29: 
	19.28: 
	19.27: 
	19.26: 
	19.25: 
	19.24: 
	19.23: 
	19.22: 
	19.21: 
	19.20: 
	19.19: 
	19.18: 
	19.17: 
	19.16: 
	19.15: 
	19.14: 
	19.13: 
	19.12: 
	19.11: 
	19.10: 
	19.9: 
	19.8: 
	19.7: 
	19.6: 
	19.5: 
	19.4: 
	19.3: 
	19.2: 
	19.1: 
	19.0: 
	18.EndRight: 
	18.PlayPauseRight: 
	18.PlayRight: 
	18.PauseRight: 
	18.PlayPauseLeft: 
	18.PlayLeft: 
	18.PauseLeft: 
	18.EndLeft: 
	anm18: 
	18.45: 
	18.44: 
	18.43: 
	18.42: 
	18.41: 
	18.40: 
	18.39: 
	18.38: 
	18.37: 
	18.36: 
	18.35: 
	18.34: 
	18.33: 
	18.32: 
	18.31: 
	18.30: 
	18.29: 
	18.28: 
	18.27: 
	18.26: 
	18.25: 
	18.24: 
	18.23: 
	18.22: 
	18.21: 
	18.20: 
	18.19: 
	18.18: 
	18.17: 
	18.16: 
	18.15: 
	18.14: 
	18.13: 
	18.12: 
	18.11: 
	18.10: 
	18.9: 
	18.8: 
	18.7: 
	18.6: 
	18.5: 
	18.4: 
	18.3: 
	18.2: 
	18.1: 
	18.0: 
	17.EndRight: 
	17.PlayPauseRight: 
	17.PlayRight: 
	17.PauseRight: 
	17.PlayPauseLeft: 
	17.PlayLeft: 
	17.PauseLeft: 
	17.EndLeft: 
	anm17: 
	17.35: 
	17.34: 
	17.33: 
	17.32: 
	17.31: 
	17.30: 
	17.29: 
	17.28: 
	17.27: 
	17.26: 
	17.25: 
	17.24: 
	17.23: 
	17.22: 
	17.21: 
	17.20: 
	17.19: 
	17.18: 
	17.17: 
	17.16: 
	17.15: 
	17.14: 
	17.13: 
	17.12: 
	17.11: 
	17.10: 
	17.9: 
	17.8: 
	17.7: 
	17.6: 
	17.5: 
	17.4: 
	17.3: 
	17.2: 
	17.1: 
	17.0: 
	16.EndRight: 
	16.PlayPauseRight: 
	16.PlayRight: 
	16.PauseRight: 
	16.PlayPauseLeft: 
	16.PlayLeft: 
	16.PauseLeft: 
	16.EndLeft: 
	anm16: 
	16.35: 
	16.34: 
	16.33: 
	16.32: 
	16.31: 
	16.30: 
	16.29: 
	16.28: 
	16.27: 
	16.26: 
	16.25: 
	16.24: 
	16.23: 
	16.22: 
	16.21: 
	16.20: 
	16.19: 
	16.18: 
	16.17: 
	16.16: 
	16.15: 
	16.14: 
	16.13: 
	16.12: 
	16.11: 
	16.10: 
	16.9: 
	16.8: 
	16.7: 
	16.6: 
	16.5: 
	16.4: 
	16.3: 
	16.2: 
	16.1: 
	16.0: 
	15.EndRight: 
	15.PlayPauseRight: 
	15.PlayRight: 
	15.PauseRight: 
	15.PlayPauseLeft: 
	15.PlayLeft: 
	15.PauseLeft: 
	15.EndLeft: 
	anm15: 
	15.23: 
	15.22: 
	15.21: 
	15.20: 
	15.19: 
	15.18: 
	15.17: 
	15.16: 
	15.15: 
	15.14: 
	15.13: 
	15.12: 
	15.11: 
	15.10: 
	15.9: 
	15.8: 
	15.7: 
	15.6: 
	15.5: 
	15.4: 
	15.3: 
	15.2: 
	15.1: 
	15.0: 
	14.EndRight: 
	14.PlayPauseRight: 
	14.PlayRight: 
	14.PauseRight: 
	14.PlayPauseLeft: 
	14.PlayLeft: 
	14.PauseLeft: 
	14.EndLeft: 
	anm14: 
	14.23: 
	14.22: 
	14.21: 
	14.20: 
	14.19: 
	14.18: 
	14.17: 
	14.16: 
	14.15: 
	14.14: 
	14.13: 
	14.12: 
	14.11: 
	14.10: 
	14.9: 
	14.8: 
	14.7: 
	14.6: 
	14.5: 
	14.4: 
	14.3: 
	14.2: 
	14.1: 
	14.0: 
	13.EndRight: 
	13.PlayPauseRight: 
	13.PlayRight: 
	13.PauseRight: 
	13.PlayPauseLeft: 
	13.PlayLeft: 
	13.PauseLeft: 
	13.EndLeft: 
	anm13: 
	13.31: 
	13.30: 
	13.29: 
	13.28: 
	13.27: 
	13.26: 
	13.25: 
	13.24: 
	13.23: 
	13.22: 
	13.21: 
	13.20: 
	13.19: 
	13.18: 
	13.17: 
	13.16: 
	13.15: 
	13.14: 
	13.13: 
	13.12: 
	13.11: 
	13.10: 
	13.9: 
	13.8: 
	13.7: 
	13.6: 
	13.5: 
	13.4: 
	13.3: 
	13.2: 
	13.1: 
	13.0: 
	12.EndRight: 
	12.PlayPauseRight: 
	12.PlayRight: 
	12.PauseRight: 
	12.PlayPauseLeft: 
	12.PlayLeft: 
	12.PauseLeft: 
	12.EndLeft: 
	anm12: 
	12.31: 
	12.30: 
	12.29: 
	12.28: 
	12.27: 
	12.26: 
	12.25: 
	12.24: 
	12.23: 
	12.22: 
	12.21: 
	12.20: 
	12.19: 
	12.18: 
	12.17: 
	12.16: 
	12.15: 
	12.14: 
	12.13: 
	12.12: 
	12.11: 
	12.10: 
	12.9: 
	12.8: 
	12.7: 
	12.6: 
	12.5: 
	12.4: 
	12.3: 
	12.2: 
	12.1: 
	12.0: 
	11.EndRight: 
	11.PlayPauseRight: 
	11.PlayRight: 
	11.PauseRight: 
	11.PlayPauseLeft: 
	11.PlayLeft: 
	11.PauseLeft: 
	11.EndLeft: 
	anm11: 
	11.31: 
	11.30: 
	11.29: 
	11.28: 
	11.27: 
	11.26: 
	11.25: 
	11.24: 
	11.23: 
	11.22: 
	11.21: 
	11.20: 
	11.19: 
	11.18: 
	11.17: 
	11.16: 
	11.15: 
	11.14: 
	11.13: 
	11.12: 
	11.11: 
	11.10: 
	11.9: 
	11.8: 
	11.7: 
	11.6: 
	11.5: 
	11.4: 
	11.3: 
	11.2: 
	11.1: 
	11.0: 
	10.EndRight: 
	10.PlayPauseRight: 
	10.PlayRight: 
	10.PauseRight: 
	10.PlayPauseLeft: 
	10.PlayLeft: 
	10.PauseLeft: 
	10.EndLeft: 
	anm10: 
	10.32: 
	10.31: 
	10.30: 
	10.29: 
	10.28: 
	10.27: 
	10.26: 
	10.25: 
	10.24: 
	10.23: 
	10.22: 
	10.21: 
	10.20: 
	10.19: 
	10.18: 
	10.17: 
	10.16: 
	10.15: 
	10.14: 
	10.13: 
	10.12: 
	10.11: 
	10.10: 
	10.9: 
	10.8: 
	10.7: 
	10.6: 
	10.5: 
	10.4: 
	10.3: 
	10.2: 
	10.1: 
	10.0: 
	9.EndRight: 
	9.PlayPauseRight: 
	9.PlayRight: 
	9.PauseRight: 
	9.PlayPauseLeft: 
	9.PlayLeft: 
	9.PauseLeft: 
	9.EndLeft: 
	anm9: 
	9.32: 
	9.31: 
	9.30: 
	9.29: 
	9.28: 
	9.27: 
	9.26: 
	9.25: 
	9.24: 
	9.23: 
	9.22: 
	9.21: 
	9.20: 
	9.19: 
	9.18: 
	9.17: 
	9.16: 
	9.15: 
	9.14: 
	9.13: 
	9.12: 
	9.11: 
	9.10: 
	9.9: 
	9.8: 
	9.7: 
	9.6: 
	9.5: 
	9.4: 
	9.3: 
	9.2: 
	9.1: 
	9.0: 
	8.EndRight: 
	8.PlayPauseRight: 
	8.PlayRight: 
	8.PauseRight: 
	8.PlayPauseLeft: 
	8.PlayLeft: 
	8.PauseLeft: 
	8.EndLeft: 
	anm8: 
	8.8: 
	8.7: 
	8.6: 
	8.5: 
	8.4: 
	8.3: 
	8.2: 
	8.1: 
	8.0: 
	7.EndRight: 
	7.PlayPauseRight: 
	7.PlayRight: 
	7.PauseRight: 
	7.PlayPauseLeft: 
	7.PlayLeft: 
	7.PauseLeft: 
	7.EndLeft: 
	anm7: 
	7.8: 
	7.7: 
	7.6: 
	7.5: 
	7.4: 
	7.3: 
	7.2: 
	7.1: 
	7.0: 
	6.EndRight: 
	6.PlayPauseRight: 
	6.PlayRight: 
	6.PauseRight: 
	6.PlayPauseLeft: 
	6.PlayLeft: 
	6.PauseLeft: 
	6.EndLeft: 
	anm6: 
	6.15: 
	6.14: 
	6.13: 
	6.12: 
	6.11: 
	6.10: 
	6.9: 
	6.8: 
	6.7: 
	6.6: 
	6.5: 
	6.4: 
	6.3: 
	6.2: 
	6.1: 
	6.0: 
	5.EndRight: 
	5.PlayPauseRight: 
	5.PlayRight: 
	5.PauseRight: 
	5.PlayPauseLeft: 
	5.PlayLeft: 
	5.PauseLeft: 
	5.EndLeft: 
	anm5: 
	5.15: 
	5.14: 
	5.13: 
	5.12: 
	5.11: 
	5.10: 
	5.9: 
	5.8: 
	5.7: 
	5.6: 
	5.5: 
	5.4: 
	5.3: 
	5.2: 
	5.1: 
	5.0: 
	4.EndRight: 
	4.PlayPauseRight: 
	4.PlayRight: 
	4.PauseRight: 
	4.PlayPauseLeft: 
	4.PlayLeft: 
	4.PauseLeft: 
	4.EndLeft: 
	anm4: 
	4.15: 
	4.14: 
	4.13: 
	4.12: 
	4.11: 
	4.10: 
	4.9: 
	4.8: 
	4.7: 
	4.6: 
	4.5: 
	4.4: 
	4.3: 
	4.2: 
	4.1: 
	4.0: 
	3.EndRight: 
	3.PlayPauseRight: 
	3.PlayRight: 
	3.PauseRight: 
	3.PlayPauseLeft: 
	3.PlayLeft: 
	3.PauseLeft: 
	3.EndLeft: 
	anm3: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	2.EndRight: 
	2.PlayPauseRight: 
	2.PlayRight: 
	2.PauseRight: 
	2.PlayPauseLeft: 
	2.PlayLeft: 
	2.PauseLeft: 
	2.EndLeft: 
	anm2: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	1.EndRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.EndLeft: 
	anm1: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.EndRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.EndLeft: 
	anm0: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


