Relativity and Cosmology for Amateur Astronomers

Akarsh Simha

August 2023

Special Relativity Primer

General Relativity Primer

Introduction to curved

 space-timeTheory of Cosmology

Counter-intuitive ideas

Our intuition is based on the length, time and mass scales we are used to in our daily lives ${ }^{1}$
${ }^{1}$ Recommended viewing: Prof. V. Balakrishnan's first lecture on "Classical Physics", available on YouTube as part of NPTEL
${ }^{2}$ Reference for this section: "Gravity" by James B Hartle, chapters 3 and 4

Postulates of Special Relativity

Principle of Relativity

The laws of physics take the same form ${ }^{2}$ in all inertial frames of reference ${ }^{3}$
(In other words, no experiment can distinguish one inertial reference frame from another)

Constancy of the speed of light

The speed of light in free-space has the same value c in all inertial frames of reference ($c=299792458 \mathrm{~m} / \mathrm{s}$)

[^0]
Relativity of Simultaneity

Events that are simultaneous in one inertial frame may not be so in another

Train frame
$K \triangle D>1$

$$
v=c / 4
$$

Platform frame
$K \Delta D>1$

Time dilation

Moving clocks appear to run slow

$\square \triangle \triangle>$
$\square \triangle \triangle>$

Time dilation

Moving clocks appear to run slow

Source: Special Relativity Lecture Notes by Prof. Tatsu Takeuchi

Spacetime Interval

- We can derive that

$$
\begin{equation*}
\Delta s^{2}:=c^{2} \Delta t^{\prime 2}-\Delta x^{\prime 2}=c^{2} \Delta t^{2} \tag{1}
\end{equation*}
$$

is the same in all frames

Spacetime Interval

- We can derive that

$$
\begin{equation*}
\Delta s^{2}:=c^{2} \Delta t^{\prime 2}-\Delta x^{\prime 2}=c^{2} \Delta t^{2} \tag{1}
\end{equation*}
$$

is the same in all frames

- Generalizing to $(3+1)$-dimensions, we have

$$
\begin{equation*}
\Delta s^{2}:=c^{2} \Delta t^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2} . \tag{2}
\end{equation*}
$$

This is a Lorentz invariant.

Spacetime Interval

- We can derive that

$$
\begin{equation*}
\Delta s^{2}:=c^{2} \Delta t^{\prime 2}-\Delta x^{\prime 2}=c^{2} \Delta t^{2} \tag{1}
\end{equation*}
$$

is the same in all frames

- Generalizing to $(3+1)$-dimensions, we have

$$
\begin{equation*}
\Delta s^{2}:=c^{2} \Delta t^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2} \tag{2}
\end{equation*}
$$

This is a Lorentz invariant.

- Δs^{2} can be positive, negative, zero.

These cases are called "time-like", "space-like" and "light-like" (or null) intervals.

Spacetime Interval

- We can derive that

$$
\begin{equation*}
\Delta s^{2}:=c^{2} \Delta t^{\prime 2}-\Delta x^{\prime 2}=c^{2} \Delta t^{2} \tag{1}
\end{equation*}
$$

is the same in all frames

- Generalizing to $(3+1)$-dimensions, we have

$$
\begin{equation*}
\Delta s^{2}:=c^{2} \Delta t^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2} \tag{2}
\end{equation*}
$$

This is a Lorentz invariant.
$\Delta \Delta s^{2}$ can be positive, negative, zero.
These cases are called "time-like", "space-like" and "light-like" (or null) intervals.
$>$ When $\Delta s^{2}>0$, proper time $\Delta \tau:=\Delta s / c\left(\Delta s^{2}>0\right)$.
Proper time is the time measured by the clock in its rest frame.

Spacetime Interval

- We can derive that

$$
\begin{equation*}
\Delta s^{2}:=c^{2} \Delta t^{\prime 2}-\Delta x^{\prime 2}=c^{2} \Delta t^{2} \tag{1}
\end{equation*}
$$

is the same in all frames

- Generalizing to $(3+1)$-dimensions, we have

$$
\begin{equation*}
\Delta s^{2}:=c^{2} \Delta t^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2} \tag{2}
\end{equation*}
$$

This is a Lorentz invariant.
$\Delta \Delta s^{2}$ can be positive, negative, zero.
These cases are called "time-like", "space-like" and "light-like" (or null) intervals.
$>$ When $\Delta s^{2}>0$, proper time $\Delta \tau:=\Delta s / c\left(\Delta s^{2}>0\right)$.
Proper time is the time measured by the clock in its rest frame.
$>$ When $\Delta s^{2}<0$, proper length is $\sqrt{-\Delta s^{2}}$.
Proper length is the length of an object measured in its rest frame.

Lorentz-Fitzgerald Contraction

Moving rulers appear shorter

- Length: simultaneous measurement of the ends
$>$ Simultaneous in one frame is not simultaneous in another!

$$
\begin{equation*}
\underbrace{\Delta x^{2}}_{\text {moving }}=\overbrace{\Delta x^{\prime 2}-c^{2} \Delta t^{\prime 2}}^{\text {rest }}<\underbrace{\Delta x^{\prime 2}}_{(\text {rest length })^{2}} \tag{3}
\end{equation*}
$$

Lorentz-Fitzgerald Contraction

Moving ruler appear shorter

Source: Special Relativity Lecture Notes by Prof. Tatsu Takeuchi

Introduction to curved space-time

Theory of Cosmology

General Relativity Primer

Newton's Cannonball

Orbiting planets are in free-fall

Free fall: The only force acting on the object is gravity

Orbiting planets are in free-fall

Free fall: The only force acting on the object is gravity

Orbiting planets are in free-fall

Free fall: The only force acting on the object is gravity

The equivalence principle

The basis for general relativity

- Gravitational Mass $=$ Inertial Mass

$$
\begin{aligned}
& F=m g, \quad\left(g=G M / r^{2}\right) \quad \text { Newton's Gravitation Law } \\
& F=m a . \quad \text { Newton's Second Law }
\end{aligned}
$$

- A freely falling observer feels no gravity

The equivalence principle

The basis for general relativity

- Gravitational Mass = Inertial Mass

$$
\begin{aligned}
& F=m g, \quad\left(g=G M / r^{2}\right) \quad \text { Newton's Gravitation Law } \\
& F=m a . \quad \text { Newton's Second Law }
\end{aligned}
$$

A freely falling observer feels no gravity

The Equivalence Principle

No experiment differentiate between a uniform gravitational field and a uniform acceleration

Case study: Light falls in a gravitational field

Case study: Light falls in a gravitational field

Case study: Light falls in a gravitational field

Case study: Light falls in a gravitational field

Case study: Light falls in a gravitational field

Gravitational Redshift

Photons climbing out of a gravitational potential well undergo redshift

Gravitational Redshift

Photons climbing out of a gravitational potential well undergo redshift

Gravitational Redshift

Photons climbing out of a gravitational potential well undergo redshift

Gravitational Redshift

Photons climbing out of a gravitational potential well undergo redshift

${ }^{4}$ Argument is from "Gravity from the Ground Up" by Bernard Schutz

Gravitational Redshift

Photons climbing out of a gravitational potential well undergo redshift

$K \triangle D>1$
Because B is moving away from the photon as seen by C, f_{B} must be redshifted ${ }^{4}$ relative to frequency seen by $\mathrm{C}=f_{A}$
${ }^{4}$ Argument is from "Gravity from the Ground Up" by Bernard Schutz

Gravitational Time Dilation

$>$ Imagine clocks at A and B ticking at frequency f_{A}

- Let's synchronize A and the light of frequency f_{A} being emitted at A so we get a crest every time the clock ticks

Gravitational Time Dilation

$>$ Imagine clocks at A and B ticking at frequency f_{A}
Let's synchronize A and the light of frequency f_{A} being emitted at A so we get a crest every time the clock ticks
The crests arrive more spaced out at B (redshift), as measured by the clock at B.

- Therefore at $B, 10$ ticks of the clock at A as signaled by the light beam register more than 10 ticks of the clock at B.

Gravitational Time Dilation

- Imagine clocks at A and B ticking at frequency f_{A}
- Let's synchronize A and the light of frequency f_{A} being emitted at A so we get a crest every time the clock ticks
- The crests arrive more spaced out at B (redshift), as measured by the clock at B.
- Therefore at $B, 10$ ticks of the clock at A as signaled by the light beam register more than 10 ticks of the clock at B.
- Thus the clock at A is running slower.

Gravitational Time Dilation

Clocks lower in gravitational fields run slower
Time runs slower lower in a gravitational field

Special Relativity Primer

General Relativity Primer

Introduction to curved space-time

Local Inertial Frames
Curved Space
Basic Mathematics of Curved
Spacetime
Weak Field Metric

Theory of Cosmology

Introduction to curved space-time
 Local Inertial Frames

Curved Space
Basic Mathematics of Curved
Spacetime
Weak Field Metric

Theory of Cosmology

Recap: Equivalence Principle

The Equivalence Principle

No experiment differentiate between a uniform gravitational field and a uniform acceleration

Recap: Equivalence Principle

The Equivalence Principle

No experiment differentiate between a uniform gravitational field and a uniform acceleration

Inertial observer in GR

- Freely falling
- No other forces (other than gravity)

Recap: Equivalence Principle

The Equivalence Principle

No experiment differentiate between a uniform gravitational field and a uniform acceleration

Inertial observer in GR

- Freely falling
- No other forces (other than gravity)

What about non-uniform gravitational fields?

Tidal Forces

Tidal forces: Differential gravity

We now switch to the freely falling frame of the COG of the earth

Tidal Forces

Tidal forces: in the local inertial frame of the COG of the earth

Tidal Forces

Tidal forces: in the local inertial frame of the COG of the earth

Tidal Forces

Tidal forces: in the local inertial frame of the COG of the earth

For more details, refer to Schutz's Gravity from the ground up

Tidal Forces

Tidal Forces

Tidal forces are the remnants of gravity for a freely falling observer
$K \triangle D>1$

Tidal Forces

Tidal forces are the remnants of gravity for a freely falling observer
$\mathbb{R} \triangle D \triangle x^{2}$

Local Inertial Frames

When the gravity is non-uniform, we can only define local inertial frames

Local inertial observer in GR

- Freely falling
- No other forces (other than gravity)
- Tidal effects still seen, only local effects of gravity vanish

The Equivalence Principle (Local Version)

Experiments in a sufficiently small freely-falling laboratory, over a sufficiently short time give the same results as the same experiments in an inertial frame in empty space

Tidal Forces

Tidal forces are the remnants of gravity for a freely falling observer
$R \triangle D \triangle$

Tidal Forces

Tidal forces are the remnants of gravity for a freely falling observer

K $\triangle \mid \triangle \times 1$

Tidal Forces

Tidal forces are the remnants of gravity for a freely falling observer

But the ball has no forces acting on it! So it must go in a straight line!

Geodesics

Straight lines in curved space

Geodesics

Straight lines in curved space

Geodesics on a sphere are great circles

Geodesics

Gamow's rotating platform

The scientists were measuring something on a rotating platform*
Gamow's Rotating Platform from Mr. Tompkins ${ }^{5}$

[^1]
Introduction to curved space-time

Local Inertial Frames
Curved Space
Basic Mathematics of Curved
Spacetime
Weak Field Metric

Theory of Cosmology

Euclidean Geometry

- This is geometry on a flat plane or in a flat space
- What we learn in high school

Euclidean Geometry

- This is geometry on a flat plane or in a flat space
- What we learn in high school
- Parallel straight lines do not intersect
- The sum of angles of a triangle is 180°
- Ratio of circumference to diameter of a circle is π

Euclidean Geometry

- This is geometry on a flat plane or in a flat space
- What we learn in high school
- Parallel straight lines do not intersect
- The sum of angles of a triangle is 180°
- Ratio of circumference to diameter of a circle is π
- Distance between two points is given by Pythagoras' theorem:

$$
(\text { distance })^{2}=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}
$$

Example of Curvature: Surface of a Sphere

Note: We are talking about a 2-dimensional surface.
We have embedded it in 3D (flat) space to understand it.

Example of Curvature: Surface of a Sphere

Note: We are talking about a 2-dimensional surface.
We have embedded it in 3D (flat) space to understand it.

- Two great circles intersect at exactly two points

Example of Curvature: Surface of a Sphere

Note: We are talking about a 2-dimensional surface.
We have embedded it in 3D (flat) space to understand it.

- Two great circles intersect at exactly two points
- i.e. lines that start out parallel do intersect

Example of Curvature: Surface of a Sphere

Note: We are talking about a 2-dimensional surface.
We have embedded it in 3D (flat) space to understand it.

- Two great circles intersect at exactly two points
- i.e. lines that start out parallel do intersect
- The sum of angles of a triangle is always $>180^{\circ}$

Example of Curvature: Surface of a Sphere

Note: We are talking about a 2-dimensional surface.
We have embedded it in 3D (flat) space to understand it.
> Two great circles intersect at exactly two points

- i.e. lines that start out parallel do intersect
- The sum of angles of a triangle is always $>180^{\circ}$
- Ratio of circumference to diameter of a circle is always
$\leq \pi$

Example of Curvature: Surface of a Sphere

A little bit of mathematics

- Distance between two nearby points is given by $(\text { distance })^{2}=\Delta \phi^{2}+\cos ^{2} \phi \Delta \lambda^{2}$ where ϕ is latitude, λ is longitude ${ }^{6}$.

[^2]
Example of Curvature: Surface of a Sphere

A little bit of mathematics

- Distance between two nearby points is given by
$(\text { distance })^{2}=\Delta \phi^{2}+\cos ^{2} \phi \Delta \lambda^{2}$
where ϕ is latitude, λ is longitude ${ }^{6}$.
- Note that the distance metric varies with latitude!

[^3]
Example of Curvature: Surface of a Sphere

A little bit of mathematics

- Distance between two nearby points is given by
$(\text { distance })^{2}=\Delta \phi^{2}+\cos ^{2} \phi \Delta \lambda^{2}$
where ϕ is latitude, λ is longitude ${ }^{6}$.
- Note that the distance metric varies with latitude!
- That's why

$$
\mathrm{d} s^{2}=\mathrm{d} \phi^{2}+\cos ^{2} \phi \mathrm{~d} \lambda^{2} .
$$

Here d \square denotes a small change in \square.

[^4]
Curvature and Parallel Transport

Curvature and Parallel Transport

Getting different results when transporting vectors is a hallmark of curvature

Beware of embeddings

They can be misleading

- Take a flat sheet of paper and draw some geometric objects on it (e.g. a triangle)

Beware of embeddings

They can be misleading

- Take a flat sheet of paper and draw some geometric objects on it (e.g. a triangle)
- Roll the paper into a cylinder: nothing about the geometry has changed

Beware of embeddings

They can be misleading

- Take a flat sheet of paper and draw some geometric objects on it (e.g. a triangle)
- Roll the paper into a cylinder: nothing about the geometry has changed
- Put a wave pattern into the paper: nothing about the geometry has changed, i.e. it is still Euclidean

Beware of embeddings

They can be misleading

- Take a flat sheet of paper and draw some geometric objects on it (e.g. a triangle)
- Roll the paper into a cylinder: nothing about the geometry has changed
> Put a wave pattern into the paper: nothing about the geometry has changed, i.e. it is still Euclidean
- Cannot wrap a paper into a sphere: the geometry is fundamentally different

Beware of embeddings

They can be misleading

- Take a flat sheet of paper and draw some geometric objects on it (e.g. a triangle)
- Roll the paper into a cylinder: nothing about the geometry has changed
- Put a wave pattern into the paper: nothing about the geometry has changed, i.e. it is still Euclidean
- Cannot wrap a paper into a sphere: the geometry is fundamentally different

Curvature in Riemannian Geometry

You cannot "cure" the curvature of a truly curved surface by bending it smoothly:
You will need to "cut it open" to flatten it out.

Warning!

Mathematics ahead

Introduction to curved space-time
 Local Inertial Frames
 Curved Space

Basic Mathematics of Curved Spacetime
Weak Field Metric

Theory of Cosmology

The Metric

Distance formula in curved spacetime

- We've been seeing formulas like this:

$$
\begin{aligned}
\mathrm{d} s^{2} & =\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2} \quad \text { (Euclidean) } \\
\mathrm{d} s^{2} & \left.=\mathrm{d} \phi^{2}+\cos ^{2} \phi \mathrm{~d} \lambda^{2} \quad \text { (Sphere }\right) \\
\mathrm{d} s^{2} & \left.=c^{2} \mathrm{~d} t^{2}-\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right) \quad \text { (Spacetime) }\right)
\end{aligned}
$$

The Metric

Distance formula in curved spacetime

- We've been seeing formulas like this:

$$
\begin{aligned}
\mathrm{d} s^{2} & =\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2} \quad \text { (Euclidean) } \\
\mathrm{d} s^{2} & =\mathrm{d} \phi^{2}+\cos ^{2} \phi \mathrm{~d} \lambda^{2} \quad \text { (Sphere) } \\
\mathrm{d} s^{2} & \left.=c^{2} \mathrm{~d} t^{2}-\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right) \quad \text { (Spacetime) }\right)
\end{aligned}
$$

- They all have the pattern:

$$
\begin{aligned}
(\text { distance })^{2} & =\left(\text { something1) } \mathrm{d}(\text { coord } 1)^{2}\right. \\
& +(\text { something2 }) \mathrm{d}(\text { coord } 2)^{2}
\end{aligned}
$$

The Metric

Distance formula in curved spacetime

- We've been seeing formulas like this:

$$
\begin{aligned}
\mathrm{d} s^{2} & =\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2} \quad \text { (Euclidean) } \\
\mathrm{d} s^{2} & =\mathrm{d} \phi^{2}+\cos ^{2} \phi \mathrm{~d} \lambda^{2} \quad \text { (Sphere) } \\
\mathrm{d} s^{2} & \left.=c^{2} \mathrm{~d} t^{2}-\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right) \quad \text { (Spacetime) }\right)
\end{aligned}
$$

- They all have the pattern:

$$
\begin{aligned}
(\text { distance })^{2} & =\left(\text { something1) } \mathrm{d}(\text { coord } 1)^{2}\right. \\
& +(\text { something2 }) \mathrm{d}(\text { coord } 2)^{2}
\end{aligned}
$$

- This is called the metric
- It tells us how to calculate distance given the coordinates of two points (space) or events (spacetime)

The Metric

Distance formula in curved space(time)

Actually, metric can in general have "cross" terms like $\mathrm{d} x \mathrm{~d} y$, e.g.
Most general 2D metric

$$
\mathrm{d} s^{2}=A(x, y) \mathrm{d} x^{2}+B(x, y) \mathrm{d} y^{2}+C(x, y) \mathrm{d} x \mathrm{~d} y
$$

The Metric

Distance formula in curved space(time)

Actually, metric can in general have "cross" terms like $\mathrm{d} x \mathrm{~d} y$, e.g.
Most general 2D metric

$$
\mathrm{d} s^{2}=A(x, y) \mathrm{d} x^{2}+B(x, y) \mathrm{d} y^{2}+C(x, y) \mathrm{d} x \mathrm{~d} y
$$

Example: Axes that are not perpendicular

Cosine rule:

$$
\Delta s^{2}=\Delta x^{2}+\Delta y^{2}-2 \Delta x \Delta y \cos \theta
$$

The Metric

The metric contains almost all information about curvature of space and time

The Metric

The metric contains almost all information about curvature of space and time

Euclidean Metric: Metric of flat space

$$
\mathrm{d} s^{2}=\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}
$$

The Metric

The metric contains almost all information about curvature of space and time

Euclidean Metric: Metric of flat space

$$
\mathrm{d} s^{2}=\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}
$$

Minkowski Metric: Metric of flat spacetime

$$
\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-\mathrm{d} x^{2}-\mathrm{d} y^{2}-\mathrm{d} z^{2}
$$

The Metric

The metric contains almost all information about curvature of space and time

Euclidean Metric: Metric of flat space

$$
\mathrm{d} s^{2}=\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}
$$

Minkowski Metric: Metric of flat spacetime

$$
\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-\mathrm{d} x^{2}-\mathrm{d} y^{2}-\mathrm{d} z^{2}
$$

FLRW Metric: Metric describing the universe

$$
\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-a(t)^{2}\left[\mathrm{~d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right]
$$

The Metric

Beware of flat space written in different coordinate systems!

The Metric

Beware of flat space written in different coordinate systems!

Euclidean 3-D space in Cartesian coordinates

$$
\mathrm{d} s^{2}=\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}
$$

Euclidean 3-D space in polar coordinates

$$
\mathrm{d} s^{2}=\mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \phi^{2}+\cos ^{2} \phi \mathrm{~d} \lambda^{2}\right)
$$

There is nothing special about one set of coordinates!

The Metric

Beware of flat space written in different coordinate systems!
Euclidean 3-D space in Cartesian coordinates

$$
\mathrm{d} s^{2}=\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}
$$

Euclidean 3-D space in polar coordinates

$$
\mathrm{d} s^{2}=\mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \phi^{2}+\cos ^{2} \phi \mathrm{~d} \lambda^{2}\right)
$$

There is nothing special about one set of coordinates!
Non-Euclidean 2-D surface of a sphere

$$
\mathrm{d} s^{2}=\left(\mathrm{d} \phi^{2}+\cos ^{2} \phi \mathrm{~d} \lambda^{2}\right)
$$

Curvature won't go away even if we use different coordinates!

The Metric

Mathematics of the equivalence principle

- The metric, however, does encode info about curvature (Second derivatives of metric \Longrightarrow curvature)

The Metric

Mathematics of the equivalence principle

- The metric, however, does encode info about curvature (Second derivatives of metric \Longrightarrow curvature)
- One can always find a set of coordinates at a given point such that metric appears Euclidean/Minkowski locally!

The Metric

Mathematics of the equivalence principle

- The metric, however, does encode info about curvature (Second derivatives of metric \Longrightarrow curvature)
- One can always find a set of coordinates at a given point such that metric appears Euclidean/Minkowski locally!

$$
\mathrm{d} s^{2}=(\text { some complicated stuff })
$$

Making a coordinate transform, change t to t^{\prime}, x to x^{\prime}, y to y^{\prime} etc...

$$
\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{\prime 2}-\mathrm{d} x^{\prime 2}-\mathrm{d} y^{\prime 2}-\mathrm{d} z^{\prime 2} \quad \text { (around some event } P \text {) }
$$

The Metric

Mathematics of the equivalence principle
\downarrow The metric, however, does encode info about curvature (Second derivatives of metric \Longrightarrow curvature)

- One can always find a set of coordinates at a given point such that metric appears Euclidean/Minkowski locally!

$$
\mathrm{d} s^{2}=(\text { some complicated stuff })
$$

Making a coordinate transform, change t to t^{\prime}, x to x^{\prime}, y to y^{\prime} etc...

$$
\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{\prime 2}-\mathrm{d} x^{\prime 2}-\mathrm{d} y^{\prime 2}-\mathrm{d} z^{\prime 2} \quad \text { (around some event } P \text {) }
$$

This is the mathematical analog of the equivalence principle! We can find a local inertial frame where the laws of physics apply just like in flat spacetime

The Metric

Mathematics of the equivalence principle

- The metric, however, does encode info about curvature (Second derivatives of metric \Longrightarrow curvature)
- One can always find a set of coordinates at a given point such that metric appears Euclidean/Minkowski locally!

$$
\mathrm{d} s^{2}=(\text { some complicated stuff })
$$

Making a coordinate transform, change t to t^{\prime}, x to x^{\prime}, y to y^{\prime} etc...

$$
\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{\prime 2}-\mathrm{d} x^{\prime 2}-\mathrm{d} y^{\prime 2}-\mathrm{d} z^{\prime 2} \quad \text { (around some event } P \text {) }
$$

This is the mathematical analog of the equivalence principle! We can find a local inertial frame where the laws of physics apply just like in flat spacetime

- Curvature, i.e. tidal effects, do not vanish!

Coordinates

Coordinates are just a systematic way of labeling events in spacetime

Same geometry can be written in different coordinates.

Geodesics

The shortest / longest distance / proper-time between two points

Distance between two points P and Q :

$$
L=\int_{P}^{Q} \mathrm{~d} s
$$

${ }^{7}$ For details, refer e.g. to Hartle's book

Geodesics

The shortest / longest distance / proper-time between two points

Distance between two points P and Q :

$$
L=\int_{P}^{Q} \mathrm{~d} s
$$

Calculus of variations is applied to find maxima/minima of L.

[^5]
Geodesics

The shortest / longest distance / proper-time between two points

Distance between two points P and Q :

$$
L=\int_{P}^{Q} \mathrm{~d} s
$$

Calculus of variations is applied to find maxima/minima of L. The result ${ }^{7}$:

Free Particle in Curved Spacetime

$$
\underbrace{\frac{\mathrm{d}^{2} x}{\mathrm{~d}^{2} \tau}}_{\text {accel }}+\Gamma_{t t}^{x}\left(\frac{\mathrm{~d} t}{\mathrm{~d} \tau}\right)^{2}=0
$$

[^6]
Geodesics

The shortest / longest distance / proper-time between two points

Distance between two points P and Q :

$$
L=\int_{P}^{Q} \mathrm{~d} s
$$

Calculus of variations is applied to find maxima/minima of L. The result ${ }^{7}$:

Free Particle in Curved Spacetime

$$
\underbrace{\frac{\mathrm{d}^{2} x}{\mathrm{~d}^{2} \tau}}_{\text {accel }}+\Gamma_{t t}^{x}\left(\frac{\mathrm{~d} t}{\mathrm{~d} \tau}\right)^{2}=0
$$

The second term is the pseudo-force we call gravity!

[^7]```
Introduction to curved
space-time
 Local Inertial Frames
 Curved Space
 Basic Mathematics of Curved
 Spacetime
 Weak Field Metric
```

    Theory of Cosmology
    
## Metric of Newtonian Gravity

How gravity warps time near a mass

Recall: Gravity slows down clocks
${ }^{8}$ See Investigations 2.2 and 18.1 in Schutz's Gravity from the Ground Up

## Metric of Newtonian Gravity

How gravity warps time near a mass

Recall: Gravity slows down clocks
Choose coordinate $t$ to be the time ticked by a clock infinitely far away from the mass. Then, we know that the clock at height $h$ in the gravitational field ticks slower ${ }^{8}$ :

$$
\delta \tau^{2}=\delta t^{2}\left(1+\frac{2 g h}{c^{2}}\right)
$$

[^8]
## Metric of Newtonian Gravity

How gravity warps time near a mass

Recall: Gravity slows down clocks
Choose coordinate $t$ to be the time ticked by a clock infinitely far away from the mass. Then, we know that the clock at height $h$ in the gravitational field ticks slower ${ }^{8}$ :

$$
\delta \tau^{2}=\delta t^{2}\left(1+\frac{2 g h}{c^{2}}\right)
$$

Therefore identifying gravitational potential $\Phi=g h$, we can guess

$$
\mathrm{d} s^{2}=c^{2} \mathrm{~d} \tau^{2}=\left(1+\frac{2 \Phi}{c^{2}}\right) c^{2} \mathrm{~d} t^{2}-\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)
$$

[^9]
## Gravitational Time Dilation

$>$ Imagine clocks at $A$ and $B$ ticking at frequency $f_{A}$

- Let's synchronize $A$ and the light of frequency $f_{A}$ being emitted at $A$ so we get a crest every time the clock ticks


## Metric of Weak Gravity

But space also gets curved: remember Gamow's platform?

A more thorough derivation shows:
Static, weak-field metric

$$
\mathrm{d} s^{2}=\left(1+\frac{2 \Phi}{c^{2}}\right) c^{2} \mathrm{~d} t^{2}-\left(1-\frac{2 \Phi}{c^{2}}\right)\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)
$$

## Metric of Weak Gravity

But space also gets curved: remember Gamow's platform?

A more thorough derivation shows:
Static, weak-field metric

$$
\mathrm{d} s^{2}=\left(1+\frac{2 \Phi}{c^{2}}\right) c^{2} \mathrm{~d} t^{2}-\left(1-\frac{2 \Phi}{c^{2}}\right)\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)
$$

If we write out the geodesic equation for this metric, we will recover Newtonian gravity as $F_{\text {grav }}=-\nabla \Phi$.

## Projectile Motion Revisited

## Explanation seen in a Kip Thorne lecture



## Projectile Motion Revisited

## Explanation seen in a Kip Thorne lecture



## Projectile Motion Revisited

## Explanation seen in a Kip Thorne lecture



## Projectile Motion Revisited

## Explanation seen in a Kip Thorne lecture



# Theory of Cosmology 

Recap
Introduction to Cosmology
Expansion of the Universe
Cosmological Redshift
The ingredients of the universe
The Friedmann Equation
The Early Universe
Distances in an Expanding (Flat)
Universe

## Special Relativity Primer

General Relativity Primer

Introduction to curved
space-time

# Theory of Cosmology Recap 

Introduction to Cosmology
Expansion of the Universe
Cosmological Redshift
The ingredients of the universe
The Friedmann Equation
The Early Universe
Distances in an Expanding (Flat)
Universe

## Curved Spacetime Concepts

- A manifold is a curved surface/space of any dimension.


## Curved Spacetime Concepts

- A manifold is a curved surface/space of any dimension.
- Spacetime is a 4-dimensional manifold. Points in spacetime are called events.


## Curved Spacetime Concepts

- A manifold is a curved surface/space of any dimension.
- Spacetime is a 4-dimensional manifold. Points in spacetime are called events.
- Coordinates are a convenient, mathematical way of labeling points in a manifold.


## Curved Spacetime Concepts

- A manifold is a curved surface/space of any dimension.
- Spacetime is a 4-dimensional manifold. Points in spacetime are called events.
- Coordinates are a convenient, mathematical way of labeling points in a manifold.
- In curved space, distances are not given by differences of coordinates or simple Pythagoras theorem. Therefore we should not attach physical meaning to coordinates.
- The metric provides a way to calculate distances in the spacetime and is the generalization of Pythagoras' theorem to curved spacetimes.


## Curved Spacetime Concepts

- A manifold is a curved surface/space of any dimension.
- Spacetime is a 4-dimensional manifold. Points in spacetime are called events.
- Coordinates are a convenient, mathematical way of labeling points in a manifold.
- In curved space, distances are not given by differences of coordinates or simple Pythagoras theorem. Therefore we should not attach physical meaning to coordinates.
- The metric provides a way to calculate distances in the spacetime and is the generalization of Pythagoras' theorem to curved spacetimes.
- The metric characterizes a curved spacetime.


## Curved Spacetime Concepts

- A manifold is a curved surface/space of any dimension.
- Spacetime is a 4-dimensional manifold. Points in spacetime are called events.
- Coordinates are a convenient, mathematical way of labeling points in a manifold.
- In curved space, distances are not given by differences of coordinates or simple Pythagoras theorem. Therefore we should not attach physical meaning to coordinates.
- The metric provides a way to calculate distances in the spacetime and is the generalization of Pythagoras' theorem to curved spacetimes.
- The metric characterizes a curved spacetime.
- Beware of embedding: extrinsic geometry is different from intrinsic geometry. GR is concerned with intrinsic geometry.


## The Metric

A metric typically looks like

$$
\mathrm{d} s^{2}=(\cdots) c^{2} \mathrm{~d} t^{2}-(\cdots) \mathrm{d} x^{2}-(\cdots) \mathrm{d} y^{2}-(\cdots) \mathrm{d} z^{2}
$$

where $\mathrm{d} \square$ denotes a small change in $\square$. Note that space and time have opposite sign.

## The Metric

A metric typically looks like

$$
\mathrm{d} s^{2}=(\cdots) c^{2} \mathrm{~d} t^{2}-(\cdots) \mathrm{d} x^{2}-(\cdots) \mathrm{d} y^{2}-(\cdots) \mathrm{d} z^{2}
$$

where $\mathrm{d} \square$ denotes a small change in $\square$. Note that space and time have opposite sign.
$\mathrm{d} s^{2}$ is the (small) distance between two neighboring events, whose coordinates are given by $(t, x, y, z)$ and $(t+\mathrm{d} t, x+\mathrm{d} x, y+\mathrm{d} y, z+\mathrm{d} z)$.

## The Metric

A metric typically looks like

$$
\mathrm{d} s^{2}=(\cdots) c^{2} \mathrm{~d} t^{2}-(\cdots) \mathrm{d} x^{2}-(\cdots) \mathrm{d} y^{2}-(\cdots) \mathrm{d} z^{2}
$$

where $\mathrm{d} \square$ denotes a small change in $\square$. Note that space and time have opposite sign.
$\mathrm{d} s^{2}$ is the (small) distance between two neighboring events, whose coordinates are given by $(t, x, y, z)$ and $(t+\mathrm{d} t, x+\mathrm{d} x, y+\mathrm{d} y, z+\mathrm{d} z)$.

The ( $\cdots$ ) represent coefficients that can depend on the coordinates themselves.

## The Metric

A metric typically looks like

$$
\mathrm{d} s^{2}=(\cdots) c^{2} \mathrm{~d} t^{2}-(\cdots) \mathrm{d} x^{2}-(\cdots) \mathrm{d} y^{2}-(\cdots) \mathrm{d} z^{2}
$$

where $\mathrm{d} \square$ denotes a small change in $\square$. Note that space and time have opposite sign.
$\mathrm{d} s^{2}$ is the (small) distance between two neighboring events, whose coordinates are given by $(t, x, y, z)$ and $(t+\mathrm{d} t, x+\mathrm{d} x, y+\mathrm{d} y, z+\mathrm{d} z)$.

The ( $\cdots$ ) represent coefficients that can depend on the coordinates themselves.

Most details of geometry of spacetime can be determined from the metric.

## GR Concepts

- Matter tells spacetime how to curve, curved spacetime tells matter how to move
Einstein's equations (which we did not discuss) when solved give the metric for a given matter configuration.


## GR Concepts

- At any point in spacetime, one can locally make spacetime appear flat. An observer for which this is true is called a local inertial observer or a freely-falling observer.
- Freely falling observers follow geodesics, the generalization of straight lines to curved spacetime.
- A freely falling observer sees spacetime as flat around them. Thus, they do not feel gravity.
B But the effect is local. At further distances from the observer, there is the remaining effect of geodesic deviation or tidal force.
- Tidal forces are the "true" forces of gravity, seen by freely falling observers

Theory of Cosmology

# Recap <br> Introduction to Cosmology 

Expansion of the Universe
Cosmological Redshift
The ingredients of the universe
The Friedmann Equation
The Early Universe
Distances in an Expanding (Flat)
Universe

## What is Cosmology?

The study of the history of the observable universe and its evolution through physics

## What is Cosmology?

- The application of physics to the study of the universe at very large scales and its history


## What is Cosmology?

- The application of physics to the study of the universe at very large scales and its history
- Observational inputs from astronomy and astrophysics
- Theoretical inputs from particle physics and general relativity


## What is Cosmology?

- The application of physics to the study of the universe at very large scales and its history
- Observational inputs from astronomy and astrophysics
- Theoretical inputs from particle physics and general relativity
- Current Standard Model of Cosmology: Called the $\Lambda$ CDM model


## The Cosmological Principle

On large scales, spacetime is isotropic and homogeneous

## The Cosmological Principle

On large scales, spacetime is isotropic and homogeneous

- Isotropic means "same in every direction"
- Homogeneous means "same at every point"


## The Cosmological Principle



Homogeneity vs. Isotropy, Picture from Ned Wright's Cosmology Tutorial

## The Universe is Expanding



Plot taken from Edwin Hubble's 1929 paper.

## Curvature of Space

Homogeneity + Isotropy $\Longrightarrow$ Only three possibilities for curvature of space
> 3D Sphere ("Spherical")

- 3D Saddle / Hyperboloid ("Hyperbolic")
- Flat ("Euclidean")

Observations show our universe is spatially flat to the best of our measurements.

## Curvature of Space

Homogeneity + Isotropy $\Longrightarrow$ Only three possibilities for curvature of space
> 3D Sphere ("Spherical")

- 3D Saddle / Hyperboloid ("Hyperbolic")
- Flat ("Euclidean")

Observations show our universe is spatially flat to the best of our measurements.
Note that at any given time instant, space is flat; spacetime is not.

Theory of Cosmology
Recap
Introduction to Cosmology
Expansion of the Universe
Cosmological Redshift
The ingredients of the universe
The Friedmann Equation
The Early Universe
Distances in an Expanding (Flat)
Universe

## Hubble-Lemaître Law

$$
v=H r
$$

$v$ is the "velocity" of a distant galaxy, $r$ is the "distance" to the galaxy, $H$ is the "Hubble constant".

## Hubble-Lemaître Law

$$
v=H r
$$

$v$ is the "velocity" of a distant galaxy, $r$ is the "distance" to the galaxy, $H$ is the "Hubble constant".

- Theoretically derived by Georges Lemaître (1927)
- Observationally inferred by Edwin Hubble from Vesto Slipher's redshifts (1929)


## Hubble-Lemaître Law

$$
v=H r
$$

$v$ is the "velocity" of a distant galaxy, $r$ is the "distance" to the galaxy, $H$ is the "Hubble constant".

- Theoretically derived by Georges Lemaître (1927)
- Observationally inferred by Edwin Hubble from Vesto Slipher's redshifts (1929)

Homogeneity and Isotropy $\Longrightarrow$ only possible form of expansion!

## Hubble-Lemaître Law

$$
v=H r
$$

$v$ is the "velocity" of a distant galaxy, $r$ is the "distance" to the galaxy, $H$ is the "Hubble constant"

- Theoretically derived by Georges Lemaître (1927)
- Observationally inferred by Edwin Hubble from Vesto Slipher's redshifts (1929)

Homogeneity and Isotropy $\Longrightarrow$ only possible form of expansion!

Note that $H$ can (and does) vary with time!
"Hubble Parameter" $H(t)$.
Current value is denoted $H_{0}, H_{0} \approx 67-73 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$.

## Model for the expanding universe

$$
K \triangle D>1
$$

No center of expansion: each galaxy moving away from the rest

Model for the expanding universe


Assign each galaxy a fixed set of coordinates $(x, y, z)$.

## The standard metric of the universe

Friedmann-Lemaître-Robertson-Walker (FLRW) metric, for flat space:

$$
\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-a(t)^{2}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)
$$

## The standard metric of the universe

Friedmann-Lemaître-Robertson-Walker (FLRW) metric, for flat space:

$$
\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-a(t)^{2}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)
$$

$a(t)$ denotes a time-varying scaling of the coordinates to get the distance.
$a(t)$ is called the scale factor.

## Hubble Law from FLRW

Let one galaxy be at $(x, 0,0)$ and another at ( $0,0,0$ ). Distance between them at time $t$ is:

$$
r(t)=a(t) x
$$

## Hubble Law from FLRW

Let one galaxy be at $(x, 0,0)$ and another at $(0,0,0)$. Distance between them at time $t$ is:

$$
r(t)=a(t) x
$$

Some time, $\Delta t$ later, the time is $t+\Delta t$, so the distance is

$$
r(t+\Delta t)=a(t+\Delta t) x
$$

## Hubble Law from FLRW

Let one galaxy be at $(x, 0,0)$ and another at ( $0,0,0$ ). Distance between them at time $t$ is:

$$
r(t)=a(t) x
$$

Some time, $\Delta t$ later, the time is $t+\Delta t$, so the distance is

$$
r(t+\Delta t)=a(t+\Delta t) x
$$

Velocity is rate of change of distance:

$$
v=\frac{r(t+\Delta t)-r(t)}{\Delta t}=\frac{a(t+\Delta t)-a(t)}{\Delta t} x
$$

## Hubble Law from FLRW

Let one galaxy be at $(x, 0,0)$ and another at $(0,0,0)$. Distance between them at time $t$ is:

$$
r(t)=a(t) x
$$

Some time, $\Delta t$ later, the time is $t+\Delta t$, so the distance is

$$
r(t+\Delta t)=a(t+\Delta t) x
$$

Velocity is rate of change of distance:

$$
v=\frac{r(t+\Delta t)-r(t)}{\Delta t}=\frac{a(t+\Delta t)-a(t)}{\Delta t} x
$$

Divide by starting distance $r\left({ }_{t} 0\right)$,

$$
\frac{v(t)}{r(t)}=\frac{a(t+\Delta t)-a(t)}{a(t) \Delta t}
$$

## Hubble Law from FLRW

Let one galaxy be at $(x, 0,0)$ and another at $(0,0,0)$. Distance between them at time $t$ is:

$$
r(t)=a(t) x
$$

Some time, $\Delta t$ later, the time is $t+\Delta t$, so the distance is

$$
r(t+\Delta t)=a(t+\Delta t) x
$$

Velocity is rate of change of distance:

$$
v=\frac{r(t+\Delta t)-r(t)}{\Delta t}=\frac{a(t+\Delta t)-a(t)}{\Delta t} x
$$

Divide by starting distance $r\left({ }_{t} 0\right)$,

$$
\frac{v(t)}{r(t)}=\frac{a(t+\Delta t)-a(t)}{a(t) \Delta t}
$$

Note $x$ cancels out, this is the idea of Hubble-Lemître Law

## Hubble Law from FLRW

$$
\frac{v(t)}{r(t)}=\frac{a(t+\Delta t)-a(t)}{a(t) \Delta t}
$$

## Hubble Law from FLRW

$$
\frac{v(t)}{r(t)}=\frac{a(t+\Delta t)-a(t)}{a(t) \Delta t}
$$

Left hand side is just $v / r=H$, so

$$
H(t)=\frac{[a(t+\Delta t)-a(t)] /(\Delta t)}{a(t)}
$$

## Hubble Law from FLRW

$$
\frac{v(t)}{r(t)}=\frac{a(t+\Delta t)-a(t)}{a(t) \Delta t}
$$

Left hand side is just $v / r=H$, so

$$
H(t)=\frac{[a(t+\Delta t)-a(t)] /(\Delta t)}{a(t)}
$$

Introduce the notation $\dot{a}(t)$ for rate of change of $a(t)$,

$$
H(t)=\frac{\dot{a}(t)}{a(t)}
$$

This is the relationship between Hubble parameter and scale factor

Theory of Cosmology
Recap
Introduction to Cosmology
Expansion of the Universe

## Cosmological Redshift

The ingredients of the universe<br>The Friedmann Equation<br>The Early Universe<br>Distances in an Expanding (Flat) Universe

## Cosmological Redshift

$$
x=H r
$$

## Cosmological Redshift

$$
\ddot{x}=H r
$$

Redshift should be interpreted as cosmological redshift due to expansion of space, and not Doppler effect due to galaxy moving away!

## Cosmological Redshift

$$
\ddot{x}=H r
$$

Redshift should be interpreted as cosmological redshift due to expansion of space, and not Doppler effect due to galaxy moving away!

Redshift $z$ :

$$
z=\frac{v}{c}
$$

$z>1$ is okay. Velocity $>c$ makes no sense. Even the special relativistic formula should not be used. In fact, relative velocity between two different points in curved spacetime makes no sense.

## Cosmological Redshift

$$
\ddot{x}=H r
$$

Redshift should be interpreted as cosmological redshift due to expansion of space, and not Doppler effect due to galaxy moving away!

Redshift $z$ :

$$
z=\frac{v}{c}
$$

$z>1$ is okay. Velocity $>c$ makes no sense. Even the special relativistic formula should not be used. In fact, relative velocity between two different points in curved spacetime makes no sense.

Astronomers however continue to convert $z$ to $v$ as a matter of convention. One should not be alarmed by $v>c$ because $v$ is not properly a velocity.

## Cosmological Redshift



## Cosmological Redshift

$z$ is more properly defined through:

$$
z=\frac{\Delta \lambda}{\lambda}=\frac{\lambda_{\text {observed }}-\lambda_{\text {emitted }}}{\lambda_{\text {emitted }}}
$$

## Cosmological Redshift

$z$ is more properly defined through:

$$
z=\frac{\Delta \lambda}{\lambda}=\frac{\lambda_{\text {observed }}-\lambda_{\text {emitted }}}{\lambda_{\text {emitted }}}
$$

Rearranging the above, we get

$$
1+z=\frac{\lambda_{\text {observed }}}{\lambda_{\text {emitted }}}
$$

## Redshifts, more properly

$$
1+z=\frac{\lambda_{\text {observed }}}{\lambda_{\text {emitted }}}
$$

Wavelength of the light stretches according to the expansion of the universe,

$$
1+z=\frac{a\left(t_{\mathrm{obs}}\right)}{a\left(t_{\mathrm{emit}}\right)}
$$

## Redshifts, more properly

$$
1+z=\frac{\lambda_{\text {observed }}}{\lambda_{\text {emitted }}}
$$

Wavelength of the light stretches according to the expansion of the universe,

$$
1+z=\frac{a\left(t_{\mathrm{obs}}\right)}{a\left(t_{\mathrm{emit}}\right)}
$$

Note: combining $z=v / c$ and $v=H(t) r$, we get

$$
z \approx \frac{H_{0} r}{c}
$$

## Redshifts, more properly

$$
1+z=\frac{\lambda_{\text {observed }}}{\lambda_{\text {emitted }}}
$$

Wavelength of the light stretches according to the expansion of the universe,

$$
1+z=\frac{a\left(t_{\mathrm{obs}}\right)}{a\left(t_{\mathrm{emit}}\right)}
$$

Note: combining $z=v / c$ and $v=H(t) r$, we get

$$
z \approx \frac{H_{0} r}{c}
$$

Why is this approximate? Because $v=H(t) r$ is valid across the universe at a given time,

## Redshifts, more properly

$$
1+z=\frac{\lambda_{\text {observed }}}{\lambda_{\text {emitted }}}
$$

Wavelength of the light stretches according to the expansion of the universe,

$$
1+z=\frac{a\left(t_{\mathrm{obs}}\right)}{a\left(t_{\mathrm{emit}}\right)}
$$

Note: combining $z=v / c$ and $v=H(t) r$, we get

$$
z \approx \frac{H_{0} r}{c}
$$

Why is this approximate? Because $v=H(t) r$ is valid across the universe at a given time, but we can only observe the past light from galaxies, not their present positions.

## Redshift! Redshift! Redshift!

It's one thing we can measure very well

- One of the most accurate measurements we can make is redshift.
- Distance can be measured through standard candles up to a certain distance, especially Type la Supernovae, but even this calibration is model-dependent.


## Redshift! Redshift! Redshift!

It's one thing we can measure very well

- One of the most accurate measurements we can make is redshift.
- Distance can be measured through standard candles up to a certain distance, especially Type la Supernovae, but even this calibration is model-dependent.
- Think of redshift $z$ as an independent measure of distance
- Think of redshift $z$ as a replacement of time, since higher $z$ is looking back into the past

Theory of Cosmology
Recap
Introduction to Cosmology
Expansion of the Universe
Cosmological Redshift
The ingredients of the universe
The Friedmann Equation
The Early Universe
Distances in an Expanding (Flat)
Universe

## Contents of the Universe

" $E=m c^{2 "}$, all forms of energy contribute to the curvature of spacetime

## Contents of the Universe

" $E=m c^{2 "}$, all forms of energy contribute to the curvature of spacetime

- Baryonic Matter ("regular" atoms and molecules making up galaxies)


## Contents of the Universe

" $E=m c^{2 "}$, all forms of energy contribute to the curvature of spacetime

- Baryonic Matter ("regular" atoms and molecules making up galaxies)
- Radiation (light rays that we see, CMBR)


## Contents of the Universe

" $E=m c^{2 "}$, all forms of energy contribute to the curvature of spacetime

- Baryonic Matter ("regular" atoms and molecules making up galaxies)
- Radiation (light rays that we see, CMBR)
- Dark Matter (particles we still don't know about?)


## Contents of the Universe

" $E=m c^{2 "}$, all forms of energy contribute to the curvature of spacetime

- Baryonic Matter ("regular" atoms and molecules making up galaxies)
- Radiation (light rays that we see, CMBR)
- Dark Matter (particles we still don't know about?)
- Dark Energy (energy of empty space itself)


## Current proportion of contents



Radiation and Neutrinos: $\Omega_{R}=10^{-4}$, negligible

## Dark Matter

Rotation curves of galaxies suggest matter extends way beyond their physical extent


Rotation Curve of M33 from Wikipedia, Credit: Mario De Leo.

## Dark Matter

Rotation curves of galaxies suggest matter extends way beyond their physical extent


Rotation Curve of M33 from Wikipedia, Credit: Mario De Leo.
Other possible explanation: Modification to Newton's II Law (MOND), less popular.

## Dark Matter

- More evidence from gravitational lensing measurements: there's lot of invisible matter
- There is LOT of evidence, and dark matter seems to be the best explanation


## Dark Matter

- More evidence from gravitational lensing measurements: there's lot of invisible matter
- There is LOT of evidence, and dark matter seems to be the best explanation
- Cannot be regular matter that's cold / does not emit, because it would block the light!


## Dark Matter

- More evidence from gravitational lensing measurements: there's lot of invisible matter
- There is LOT of evidence, and dark matter seems to be the best explanation
- Cannot be regular matter that's cold / does not emit, because it would block the light!
- Currently most anticipated: "Cold Dark Matter":
- i.e. massive particles (not light like neutrinos),
- interacts very weakly with ordinary matter and radiation
- Search for dark matter candidates still underway


## Dark Energy ( $\Lambda$ )

What the hell is it?

Denoted by $\Lambda$. It is an energy whose density does not diminish as the universe expands.

## Dark Energy ( $\Lambda$ )

What the hell is it?

Denoted by $\Lambda$. It is an energy whose density does not diminish as the universe expands.

Candidates:

- Could just be an aspect of Einstein's Equations (Cosmological Constant)


## Dark Energy ( $\Lambda$ )

What the hell is it?

Denoted by $\Lambda$. It is an energy whose density does not diminish as the universe expands.

Candidates:

- Could just be an aspect of Einstein's Equations (Cosmological Constant)
- Could be energy of quantum fluctuations? (Numbers don't add up: the expected number is way high than the amount of dark energy present)


## Dark Energy ( $\Lambda$ )

What the hell is it?

Denoted by $\Lambda$. It is an energy whose density does not diminish as the universe expands.

Candidates:

- Could just be an aspect of Einstein's Equations (Cosmological Constant)
- Could be energy of quantum fluctuations? (Numbers don't add up: the expected number is way high than the amount of dark energy present)
A new kind of field with energy called quintessence?


## Dark Energy ( $\Lambda$ )

What the hell is it?

Denoted by $\Lambda$. It is an energy whose density does not diminish as the universe expands.

Candidates:

- Could just be an aspect of Einstein's Equations (Cosmological Constant)
- Could be energy of quantum fluctuations? (Numbers don't add up: the expected number is way high than the amount of dark energy present)
- A new kind of field with energy called quintessence?

But it is needed to account for accelerated expansion of the universe.

## As the universe expands...

density of matter (dark and baryonic) dilutes like $a^{3}(t)$


## K $\triangle \mid \triangle \gg 1$

Number of galaxies remains constant, but volume of region increases like $a(t)^{3}$.

## As the universe expands...

 density of radiation (and neutrinos) dilutes like $a^{4}(t)$

## $K \triangle \gg 1$

Not only the density of photons decreases like $1 / a(t)^{3}$, the energy of each photon also decreases as $1 / a(t)$

## As the universe expands...

density of dark energy does not dilute at all

$K \triangle D>1$

## Density of the contents of the universe

as a function of scale factor $a(t)$

Recall that $1+z=a($ now $) / a($ then $)$. If today's densities are:
$>$ Matter: $\rho_{M}$,
> Photons and Neutrinos: $\rho_{R}$,

- Dark Energy: $\rho_{\Lambda}$,


## Density of the contents of the universe

 as a function of scale factor $a(t)$Recall that $1+z=a$ (now) $/ a$ (then). If today's densities are:

- Matter: $\rho_{M}$,
- Photons and Neutrinos: $\rho_{R}$,
$>$ Dark Energy: $\rho_{\Lambda}$, then the past densities at redshift $z$ are:
$>$ Matter: $\rho_{M}(1+z)^{3}$
$>$ Photons and Neutrinos: $\rho_{R}(1+z)^{4}$
$>$ Dark Energy: $\rho_{\Lambda}$


## Density of the contents of the universe

 as a function of scale factor $a(t)$Recall that $1+z=a($ now $) / a($ then $)$. If today's densities are:

- Matter: $\rho_{M}$,
- Photons and Neutrinos: $\rho_{R}$,
> Dark Energy: $\rho_{\Lambda}$, then the past densities at redshift $z$ are:
- Matter: $\rho_{M}(1+z)^{3}$
$>$ Photons and Neutrinos: $\rho_{R}(1+z)^{4}$
$>$ Dark Energy: $\rho_{\Lambda}$
So the total density at any point in the past is

$$
\rho(z)=\rho_{M}(1+z)^{3}+\rho_{R}(1+z)^{4}+\rho_{\Lambda}
$$

Theory of Cosmology
Recap
Introduction to Cosmology
Expansion of the Universe
Cosmological Redshift
The ingredients of the universe
The Friedmann Equation
The Early Universe
Distances in an Expanding (Flat)
Universe

## Friedmann Equation

Einstein's equations roughly have the form:

$$
\text { Curvature of Spacetime }=\frac{8 \pi G}{c^{2}} \rho
$$

where $\rho$ is the density of all forms of matter and energy. "Curvature of spacetime" can be calculated in terms of metric.

## Friedmann Equation

Einstein's equations roughly have the form:

$$
\text { Curvature of Spacetime }=\frac{8 \pi G}{c^{2}} \rho
$$

where $\rho$ is the density of all forms of matter and energy. "Curvature of spacetime" can be calculated in terms of metric.

Applying this to FLRW metric (for flat space), we get an equation of the form

$$
\left(\frac{\dot{a}}{a}\right)^{2}=H^{2}=\frac{8 \pi G}{3} \rho .
$$

Note that $8 \pi G / 3=5.59 \times 10^{-10} \mathrm{kgm}^{3} / \mathrm{s}^{2}$ is just a constant.

## Friedmann Equation

Einstein's equations roughly have the form:

$$
\text { Curvature of Spacetime }=\frac{8 \pi G}{c^{2}} \rho
$$

where $\rho$ is the density of all forms of matter and energy. "Curvature of spacetime" can be calculated in terms of metric.

Applying this to FLRW metric (for flat space), we get an equation of the form

$$
\left(\frac{\dot{a}}{a}\right)^{2}=H^{2}=\frac{8 \pi G}{3} \rho .
$$

Note that $8 \pi G / 3=5.59 \times 10^{-10} \mathrm{kgm}^{3} / \mathrm{s}^{2}$ is just a constant. If we allow for curvature of space, it takes the form:

$$
H(t)^{2}=\frac{8 \pi G}{3} \rho(t)-\frac{k c^{2}}{a(t)^{2}}
$$

where $k=+1$ for spherical, $k=-1$ for hyperbolic, $k=0$ for flat space.
This is called the Friedmann equation.

## Critical Density

$$
H(t)^{2}=\frac{8 \pi G}{3} \rho(t)-\frac{k c^{2}}{a(t)^{2}}
$$

When $k=0$, i.e. flat space, the density $\rho$ must be equal to

$$
\rho_{c}(t)=\frac{3 H(t)^{2}}{8 \pi G}
$$

This is called the Critical Density.

## Critical Density

$$
H(t)^{2}=\frac{8 \pi G}{3} \rho(t)-\frac{k c^{2}}{a(t)^{2}}
$$

When $k=0$, i.e. flat space, the density $\rho$ must be equal to

$$
\rho_{c}(t)=\frac{3 H(t)^{2}}{8 \pi G}
$$

This is called the Critical Density. Take the critical density today,

$$
\rho_{c}=\frac{3 H_{0}^{2}}{8 \pi G}
$$

## Critical Density

$$
H(t)^{2}=\frac{8 \pi G}{3} \rho(t)-\frac{k c^{2}}{a(t)^{2}},
$$

When $k=0$, i.e. flat space, the density $\rho$ must be equal to

$$
\rho_{c}(t)=\frac{3 H(t)^{2}}{8 \pi G}
$$

This is called the Critical Density. Take the critical density today,

$$
\rho_{c}=\frac{3 H_{0}^{2}}{8 \pi G}
$$

and divide the Friedmann equation by it

$$
\left(\frac{H(t)}{H_{0}}\right)^{2}=\frac{\rho(t)}{\rho_{c}}-\frac{k c^{2}}{\rho_{c} a(t)^{2}},
$$

## Put in the ingredients into $\rho$

Write in terms of $z$ rather than $t$ (both measure how far into the past we are looking).
Recall,

$$
\rho(z)=\rho_{M}(1+z)^{3}+\rho_{R}(1+z)^{4}+\rho_{\Lambda}
$$

## Put in the ingredients into $\rho$

Write in terms of $z$ rather than $t$ (both measure how far into the past we are looking).
Recall,

$$
\rho(z)=\rho_{M}(1+z)^{3}+\rho_{R}(1+z)^{4}+\rho_{\Lambda}
$$

So we can write,

$$
\left(\frac{H(z)}{H_{0}}\right)^{2}=\frac{\rho_{M}}{\rho_{c}}(1+z)^{3}+\frac{\rho_{R}}{\rho_{c}}(1+z)^{4}+\frac{\rho_{\Lambda}}{\rho_{c}}-\frac{k c^{2}}{\rho_{c} a(\text { now })^{2}}(1+z)^{2}
$$

## Density Parameters

We now define the density parameters as:

$$
\begin{aligned}
\Omega_{M} & =\frac{\rho_{M}}{\rho_{c}} \\
\Omega_{R} & =\frac{\rho_{R}}{\rho_{c}} \\
\Omega_{\Lambda} & =\frac{\rho_{\Lambda}}{\rho_{c}} \\
\Omega_{K} & =\frac{-k c^{2}}{\rho_{c} a(\text { now })^{2}}
\end{aligned}
$$

## Density Parameters

We now define the density parameters as:

$$
\begin{aligned}
\Omega_{M} & =\frac{\rho_{M}}{\rho_{c}} \\
\Omega_{R} & =\frac{\rho_{R}}{\rho_{c}} \\
\Omega_{\Lambda} & =\frac{\rho_{\Lambda}}{\rho_{c}} \\
\Omega_{K} & =\frac{-k c^{2}}{\rho_{c} a(\text { now })^{2}}
\end{aligned}
$$

So we can write,

$$
\frac{H(z)^{2}}{H_{0}^{2}}=\Omega_{\Lambda}+\Omega_{K}(1+z)^{2}+\Omega_{M}(1+z)^{3}+\Omega_{R}(1+z)^{4}
$$

## The Friedmann Equation from Newtonian Physics

(Must however include all forms of energy under mass density)

Pick an origin. Then by Isotropy + Newton's Shell Theorem, galaxy of mass $m$ at radius $r$ from the origin flying away with velocity $v$ has energy

$$
\frac{1}{2} m v^{2}-\frac{4 \pi G m \rho r^{2}}{3}=E=\text { constant. }
$$

## The Friedmann Equation from Newtonian Physics

(Must however include all forms of energy under mass density)

Pick an origin. Then by Isotropy + Newton's Shell Theorem, galaxy of mass $m$ at radius $r$ from the origin flying away with velocity $v$ has energy

$$
\frac{1}{2} m v^{2}-\frac{4 \pi G m \rho r^{2}}{3}=E=\text { constant } .
$$

But $v=H r$,

$$
r^{2}\left(H^{2}-\frac{8 \pi G}{3} \rho\right)=2 E / m=\text { constant } .
$$

## The Friedmann Equation from Newtonian Physics

(Must however include all forms of energy under mass density)

Pick an origin. Then by Isotropy + Newton's Shell Theorem, galaxy of mass $m$ at radius $r$ from the origin flying away with velocity $v$ has energy

$$
\frac{1}{2} m v^{2}-\frac{4 \pi G m \rho r^{2}}{3}=E=\text { constant. }
$$

But $v=H r$,

$$
r^{2}\left(H^{2}-\frac{8 \pi G}{3} \rho\right)=2 E / m=\text { constant } .
$$

For escape velocity, $E=0$, so

$$
H^{2}(t)=\frac{8 \pi G}{3} \rho_{c} \quad \text { (Critical Denisty) }
$$

## The Friedmann Equation from Newtonian Physics

(Must however include all forms of energy under mass density)

For non-zero $E$, define $k:=-2 E /\left(m c^{2}\right)$,

$$
H^{2}(t)=\frac{8 \pi G}{3} \rho-\frac{k}{r^{2}}
$$

So we get the full Friedmann equation!

## The Friedmann Equation from Newtonian Physics

(Must however include all forms of energy under mass density)

For non-zero $E$, define $k:=-2 E /\left(m c^{2}\right)$,

$$
H^{2}(t)=\frac{8 \pi G}{3} \rho-\frac{k}{r^{2}}
$$

So we get the full Friedmann equation!
Also if the universe is spherically curved, big crunch is possible

## The $\Lambda C D M$ model

## ^: Dark Energy <br> CDM: Abbreviation for Cold Dark Matter

$$
\Omega_{M}=0.316, \Omega_{\Lambda}=0.683, \Omega_{R} \text { and } \Omega_{K} \text { negligible. }
$$

## The $\Lambda$ CDM model

## ^: Dark Energy

CDM: Abbreviation for Cold Dark Matter

$$
\Omega_{M}=0.316, \Omega_{\Lambda}=0.683, \Omega_{R} \text { and } \Omega_{K} \text { negligible. }
$$ Baryonic Matter



Theory of Cosmology

## Recap

Introduction to Cosmology
Expansion of the Universe
Cosmological Redshift
The ingredients of the universe
The Friedmann Equation
The Early Universe
Distances in an Expanding (Flat)
Universe

From the present to the past
Using $\Omega_{M}=0.268, \Omega_{R}=9 \times 10^{-5}, \Omega_{L}=0.732$


$$
\begin{gathered}
z=1 \\
K \triangle \triangle \gg 1
\end{gathered}
$$

## Cosmic Microwave Background Radiation

The universe is filled with microwave radiation


CMBR map from Planck collaboration.
(c) ESA and Planck Collaboration

## The CMBR is the redshifted relic of the hot universe

The temperature redshifts,

$$
T(z)=T_{0}(1+z)
$$

The spectrum remains that of a black-body.

## The CMBR is the redshifted relic of the hot universe

The temperature redshifts,

$$
T(z)=T_{0}(1+z)
$$

The spectrum remains that of a black-body.

## "Recombination" epoch

In the early universe,
the protons and electrons were in a plasma
$>$ plasma of conducting particles is opaque to light (absorbs and re-emits)

## "Recombination" epoch

In the early universe,
the protons and electrons were in a plasma
plasma of conducting particles is opaque to light (absorbs and re-emits)
As universe cooled down,
$\downarrow$ At about $T(z) \approx 3000 K$, protons and electrons combined to form hydrogen

- Non-conducting gas, transparent to light
- Photons stream freely thereafter


## "Recombination" epoch

In the early universe,

- the protons and electrons were in a plasma
> plasma of conducting particles is opaque to light (absorbs and re-emits)
As universe cooled down,
$\downarrow$ At about $T(z) \approx 3000 K$, protons and electrons combined to form hydrogen
- Non-conducting gas, transparent to light
- Photons stream freely thereafter

The temperature of the radiation is frozen-in from the "recombination" era, and gets redshifted.

## "Recombination" epoch

In the early universe,
the protons and electrons were in a plasma
plasma of conducting particles is opaque to light (absorbs and re-emits)
As universe cooled down,
$\downarrow$ At about $T(z) \approx 3000 K$, protons and electrons combined to form hydrogen

- Non-conducting gas, transparent to light
- Photons stream freely thereafter

The temperature of the radiation is frozen-in from the "recombination" era, and gets redshifted.

$$
T(z)=3000 K, T_{0}=2.7 K \Longrightarrow z_{\text {recomb }} \approx 1100
$$

## Anisotropy of the CMBR

The temperature varies to a part in $10^{5}$


CMBR map from Planck collaboration. (c) ESA and Planck Collaboration
> The fluctuations in CMBR are imprints of fluctuations of matter density

- These fluctuations condensed under gravity to form galaxies


## Behavior of the scale factor

Solutions of the Friedmann equation for various constituents

| Dominating Constitutent | How it Dilutes | Behavior of Scale Factor |
| :--- | :--- | :--- |
| Radiation | $\rho(t) \propto 1 / a(t)^{3}$ | $a(t) \propto t^{1 / 2}$ |
| Matter | $\rho(t) \propto 1 / a(t)^{4}$ | $a(t) \propto t^{2 / 3}$ |
| Dark Energy | $\rho(t)=$ constant | $a(t) \propto \exp \left(H_{0} t\right)$ |

## Expansion History of the Universe



Plot of $a(t)$ vs $t$, Credit: NASA

Theory of Cosmology
Recap
Introduction to Cosmology
Expansion of the Universe
Cosmological Redshift
The ingredients of the universe
The Friedmann Equation
The Early Universe
Distances in an Expanding (Flat) Universe

## Different notions of distance



## Different notions of distance



## Comoving Radial Distance



## Comoving Radial Distance



Freeze time

## Comoving Radial Distance



Add up the distances

## Comoving Radial Distance



Add up the distances

## Light Travel Time vs Redshift



## Angular Size Distance

When we see a galaxy, it appears at it appeared in the past, at the lookback time $t(z)$.

## Angular Size Distance

When we see a galaxy, it appears at it appeared in the past, at the lookback time $t(z)$.

At this time, it was closer to us; so it appears bigger than expected

## Angular Size Distance

When we see a galaxy, it appears at it appeared in the past, at the lookback time $t(z)$.

At this time, it was closer to us; so it appears bigger than expected
At some point, we are looking so far back, that the galaxies start getting closer to us and the angular size distance actually decreases!

## Angular Size Distance

Angular Size Distance


## Luminosity Distance

"Normal" Inverse-Square Law:

$$
F=\frac{L}{4 \pi d^{2}}
$$

## Luminosity Distance

"Normal" Inverse-Square Law:

$$
F=\frac{L}{4 \pi d^{2}}
$$

In an expanding universe, what must $d$ be?
The answer: Comoving Distance at the instance the light reaches us, i.e. $d(z)$.

## Luminosity Distance

## "Normal" Inverse-Square Law:

$$
F=\frac{L}{4 \pi d^{2}}
$$

In an expanding universe, what must $d$ be?
The answer: Comoving Distance at the instance the light reaches us, i.e. $d(z)$.
But photons redshifted, so energy reduces by $1+z$. Rate of arrival of photons also reduces by $1+z$.

## Luminosity Distance

## "Normal" Inverse-Square Law:

$$
F=\frac{L}{4 \pi d^{2}}
$$

In an expanding universe, what must $d$ be?
The answer: Comoving Distance at the instance the light reaches us, i.e. $d(z)$.
But photons redshifted, so energy reduces by $1+z$. Rate of arrival of photons also reduces by $1+z$.
Thus, the expanding-universe version is,

$$
F=\frac{L}{4 \pi d(z)^{2}(1+z)^{2}},
$$

so the luminosity distance is given by $d(z)(1+z)$.

## Different notions of distance

## Comparison of various distances in Lambda-CDM



## Different notions of distance

Flat Universe

Define

$$
E(z):=\Omega_{\Lambda}+\Omega_{K}(1+z)^{2}+\Omega_{M}(1+z)^{3}+\Omega_{R}(1+z)^{4} .
$$

## Light Travel Time:

$$
t(z):=\frac{1}{H_{0}} \int_{0}^{z} \frac{\mathrm{~d} z^{\prime}}{\left(1+z^{\prime}\right) \sqrt{E\left(z^{\prime}\right)}}
$$

Comoving Radial Distance:

$$
d(z):=\frac{c}{H_{0}} \int_{0}^{z} \frac{\mathrm{~d} z^{\prime}}{\sqrt{E\left(z^{\prime}\right)}}
$$

Different notions of distance
Flat Universe

Angular Size Distance:

$$
d_{A}(z):=\frac{d(z)}{1+z}
$$

Luminosity Distance:

$$
d_{L}(z):=d(z)(1+z)
$$

Different notions of distance
Flat Universe

Angular Size Distance:

$$
d_{A}(z):=\frac{d(z)}{1+z}
$$

Luminosity Distance:

$$
d_{L}(z):=d(z)(1+z)
$$

Too many complex equations???? :-(

## Use Ned Wright's Cosmology Calculator instead!



Getting Started

```
Enter values, hit a button
69.6 H\(\mathrm{H}_{0}\)
0.286 Omega \(_{\text {M }}\)
\(\begin{array}{ll}3 & z\end{array}\)
Open Flat
0.714 Omega \({ }_{\text {vac }}\)
General
```

For $\underline{H}_{0}=69.6$, Omega $_{\mathrm{M}}=0.286$, Omega $_{\text {vac }}=0.714, \underline{z}=3.000$

- It is now 13.721 Gyr since the Big Bang.
- The age at redshift 2 was 2.171 Gyr.

The light travel time was 11.549 Gyr .

- The comoving radial distance, which goes into Hubble's law, is 6481.3 Mpc or 21.139 Gly .
- The comoving volume within redshift $z$ is $1140.389 \mathrm{Gpc}^{3}$.
- The angular size distance $\mathrm{D}_{\mathrm{A}}$ is 1620.3 Mpc or 5.2846 Gly.
- This gives a scale of $7.855 \mathrm{kpc} /$ ".
- The luminosity distance $\mathrm{D}_{\mathrm{L}}$ is 25924.3 Mpc or 84.554 Gly.

Open sets Omega ${ }_{\text {vac }}=0$ giving an open Universe [if you entered Omega ${ }_{M}<1$ ]
Flat sets Omega ${ }_{\text {vac }}=1-$ Omega $_{\mathrm{M}}$ giving a
flat Universe.
General uses the Omega ${ }_{\text {vac }}$ that you entered.
Source for the default parameters.

1 Gly $=1,000,000,000$ light years or $9.461^{*} 10^{26} \mathrm{~cm}$
$1 \mathrm{Gyr}=1,000,000,000$ years.
$1 \mathrm{Mpc}=1,000,000$ parsecs $=3.08568 * 10^{24} \mathrm{~cm}$, or $3,261,566$ light years .

$$
\underline{\text { Tutorial: Part 1 } \mid}|\underline{\text { Part 2 }}| \mid \text { Part 3 } \mid \text { Part 4 }
$$

See the advanced and light travel time versions of the calculator.
James Schombert has written a Python version of this calculator.
Ned Wright's home page
© 1999-2016 Edward L. Wright. If you use this calculator while preparing a paper, please cite Wright (2006, PASP, 118, 1711). Last modified on 07/23/2018 14:22:14
https://www.astro.ucla.edu/~wright/CosmoCalc.html

Thank you

## References

Lecture Series:

- Cosmology Lectures from Lenny Susskind's Theoretical Minimum (least technical)
- G Srinivasan's Lectures for Astronomical Society of India
- Cosmology Lecture (highly technical)

Online resources:

- Distance measures in cosmology by D. W. Hogg
- Ned Wright's Cosmology Tutorial
- Distances in Cosmology by G. Kauffmann
- GR and Distances by R. Kudritzki
- Ned Wright's Cosmology FAQ


[^0]:    ${ }^{2}$ The mathematical form of the equation looks the same
    ${ }^{3}$ An inertial frame of reference is a frame that moves with a free particle

[^1]:    ${ }^{5}$ See also his Scientific American article from March 1961

[^2]:    ${ }^{4}$ By convention, this is written in terms of co-latitude $\theta$ and using $\phi$ for longitude, e.g. in Schutz. Then this formula appears as $\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}$.

[^3]:    ${ }^{4}$ By convention, this is written in terms of co-latitude $\theta$ and using $\phi$ for longitude, e.g. in Schutz. Then this formula appears as $\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}$.

[^4]:    ${ }^{4}$ By convention, this is written in terms of co-latitude $\theta$ and using $\phi$ for longitude, e.g. in Schutz. Then this formula appears as $\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}$.

[^5]:    ${ }^{7}$ For details, refer e.g. to Hartle's book

[^6]:    ${ }^{7}$ For details, refer e.g. to Hartle's book

[^7]:    ${ }^{7}$ For details, refer e.g. to Hartle's book

[^8]:    ${ }^{8}$ See Investigations 2.2 and 18.1 in Schutz's Gravity from the Ground Up

[^9]:    ${ }^{8}$ See Investigations 2.2 and 18.1 in Schutz's Gravity from the Ground Up

